Cho tam giác ABC vuông ởA,AB=8,AC=15.Kẻ đường cao AH.Lấy điểm D đối xứng vs B qua H.Vẽ (O;CD/2) cắt AC tại E
a)C/m tam giác DEC vuông
b)Kẻ HK vuông goc vs AC ở H.Cm tam giac AHE can tai H
c)HE là tiếp tuyến (O)
Cho tam giác ABC vuông tại A có AB = 8cm,AC = 15cm.Vẽ đường cao AH.Gọi D là điểm đối xứng của B qua H.Vẽ đường tròn đường kính CD cắt AC ở E.Chứng minh HE là tiếp tuyến của đường tròn
Cho tam giác ABC vuông tại A có AB = 8cm,AC = 15cm.Vẽ đường cao AH.Gọi D là điểm đối xứng của B qua H.Vẽ đường tròn đường kính CD cắt AC ở E.Chứng minh HE là tiếp tuyến của đường tròn
Cho tam giác ABC vuông tại A có AB = 8cm,AC = 15cm.Vẽ đường cao AH.Gọi D là điểm đối xứng của B qua H.Vẽ đường tròn đường kính CD cắt AC ở E.Chứng minh HE là tiếp tuyến của đường tròn
Cho tam giác ABC vuông tại A;AB=15cm;AC=20cm,đường cao AH
a,Tính độ dài BC,AH
b,Gọi D là điểm đối xứng vs B qua H.Vẽ hbh ADCE.Tứ giác ABCE là hình gì.cm
c,tính độ dài AE
Cho tam giác ABC vuông tại A có AB = 8cm,AC = 15cm.Vẽ đường cao AH.Gọi D là điểm đối xứng của B qua H.Vẽ đường tròn đường kính CD cắt AC ở E.
a. Chứng minh HE là tiếp tuyến của đường tròn
b. Tính HE
a: Gọi M là trung điểm của CD
=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm
=>MD=ME
=>ΔMDE cân tại M
=>góc MED=góc MDE
Xét ΔABD có
AH vừa là đường cao, vừa là đường trung tuyến
nên ΔABD cân tại A
=>AH là phân giác của góc BAD
=>góc BAH=góc DAH
Xét tứ giác AHDE có
góc AHD+góc AED=180 độ
nên AHDE là tứ giác nội tiếp
=>góc DAH=góc DEH
=>góc DEH=góc BAH=góc C
=>góc MEH=góc C+góc CDE=90 độ
=>HE là tiếp tuyến của (M)
b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)
CD=BC-2x64/17=161/17(cm)
EM=161/17:2=161/34(cm)
MH=MD+DH=BC/2=8,5cm
=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)
Cho tam giác ABC vuông tại A có AB = 8cm,AC = 15cm.Vẽ đường cao AH.Gọi D là điểm đối xứng của B qua H.Vẽ đường tròn đường kính CD cắt AC ở E.
a. Chứng minh HE là tiếp tuyến của đường tròn
b. Tính HE
a, Gọi O là trung điểm CD
Từ giả thiết suy ra tam giác ABD và tam giác ODE đều
=> DE = DH = DO = 1 4 BC
=> H E O ^ = 90 0
=> HE là tiếp tuyến của đường tròn đường kính CD
b, HE = 4 3
a: Gọi M là trung điểm của CD
=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm
=>MD=ME
=>ΔMDE cân tại M
=>góc MED=góc MDE
Xét ΔABD có
AH vừa là đường cao, vừa là đường trung tuyến
nên ΔABD cân tại A
=>AH là phân giác của góc BAD
=>góc BAH=góc DAH
Xét tứ giác AHDE có
góc AHD+góc AED=180 độ
nên AHDE là tứ giác nội tiếp
=>góc DAH=góc DEH
=>góc DEH=góc BAH=góc C
=>góc MEH=góc C+góc CDE=90 độ
=>HE là tiếp tuyến của (M)
b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)
CD=BC-2x64/17=161/17(cm)
EM=161/17:2=161/34(cm)
MH=MD+DH=BC/2=8,5cm
=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)
Cho tam giác ABC vuông tại A có AB = 8cm,AC = 15cm.Vẽ đường cao AH.Gọi D là điểm đối xứng của B qua H.Vẽ đường tròn đường kính CD cắt AC ở E.
a. Chứng minh HE là tiếp tuyến của đường tròn
b. Tính HE
Cho tam giác ABC vuông tại A, đường cao AH.Gọi AB=8cm,AC=15cm.Gọi D là điểm đối xứng của B qua H.Vẽ đường tròn đường kính CD cắt AC ở E. a.Chứng minh HE là tiếp tuyến của đường tròn
b.Tính độ dài HE
a: Gọi M là trung điểm của CD
=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm
=>MD=ME
=>ΔMDE cân tại M
=>góc MED=góc MDE
Xét ΔABD có
AH vừa là đường cao, vừa là đường trung tuyến
nên ΔABD cân tại A
=>AH là phân giác của góc BAD
=>góc BAH=góc DAH
Xét tứ giác AHDE có
góc AHD+góc AED=180 độ
nên AHDE là tứ giác nội tiếp
=>góc DAH=góc DEH
=>góc DEH=góc BAH=góc C
=>góc MEH=góc C+góc CDE=90 độ
=>HE là tiếp tuyến của (M)
b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)
CD=BC-2x64/17=161/17(cm)
EM=161/17:2=161/34(cm)
MH=MD+DH=BC/2=8,5cm
=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)
Cho tam giác ABC vuông tại A có AB = 8cm,AC = 15cm.Vẽ đường cao AH.Gọi D là điểm đối xứng của B qua H.Vẽ đường tròn đường kính CD cắt AC ở E.
a. Chứng minh HE là tiếp tuyến của đường tròn
b. Tính HE