Chương II - Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anh Quynh

Cho tam giác ABC vuông tại A có AB = 8cm,AC = 15cm.Vẽ đường cao AH.Gọi D là điểm đối xứng của B qua H.Vẽ đường tròn đường kính CD cắt AC ở E.

a. Chứng minh HE là tiếp tuyến của đường tròn
b. Tính HE

Nguyễn Lê Phước Thịnh
8 tháng 10 2022 lúc 10:59

a: Gọi M là trung điểm của CD

=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm

=>MD=ME

=>ΔMDE cân tại M

=>góc MED=góc MDE

Xét ΔABD có 

AH vừa là đường cao, vừa là đường trung tuyến

nên ΔABD cân tại A

=>AH là phân giác của góc BAD

=>góc BAH=góc DAH

Xét tứ giác AHDE có

góc AHD+góc AED=180 độ

nên AHDE là tứ giác nội tiếp

=>góc DAH=góc DEH

=>góc DEH=góc BAH=góc C

=>góc MEH=góc C+góc CDE=90 độ

=>HE là tiếp tuyến của (M)

b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)

CD=BC-2x64/17=161/17(cm)

EM=161/17:2=161/34(cm)

MH=MD+DH=BC/2=8,5cm

=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)


Các câu hỏi tương tự
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết