Cho a,b dương và a2010 + b2010 = a2011 + b2011 = a2012 + b2012 Tính a2013 + b2013
Cho a1, a2,.....,a2013nguyen và b1,b2,.....,b2013 là 1 hoán vị của các số a1,a2,....,a2013 .
cmr (a1-b1)(a2-b2).......(a2013-b2013) là số chẵn
Giả sử tích (a1−b1)(a2−b2)...(a2013−b2013) là số lẻ
Thank you Tiểu Thư họ Nguyễn và Đặng Nhật Minh
cho a + b + c = 1; a2 + b2 + c2 = 1; a3 + b3 + c3 = 1
Chứng minh rằng a2013 + b2013 + c2013 = 1
CMR;neu tu day so \(\frac{\alpha1}{\alpha2}=\frac{\alpha2}{\alpha}=.......=\frac{a2010}{a2011}\) ta co the suy ra ti le thuc
\(\frac{a1}{a2011}=\left(\frac{a1+a2+....+a2010}{a2+a3+...+a2011}\right)\)
Tỷ lệ thức này sai nhé!
Đúng thì phải theo kết quả của lời giải này nhé!
Ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2010}}{a_{2011}}=k\Rightarrow k^{2010}=\frac{a_1.a_2...a_{2010}}{a_2.a_3...a_{2011}}=\frac{a_1}{a_{2011}}\)
Mà \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2010}}{a_{2011}}=k=\frac{a_1+a_2+...+a_{2010}}{a_2+a_3+...+a_{2011}}\)
Vậy \(\frac{a_1}{a_{2011}}=\left(\frac{a_1+a_2+...+a_{2010}}{a_2+a_3+...+a_{2011}}\right)^{2010}=k^{2010}\)
cho day so a1,a2,a3,.....Biet a2=3,a2012=2013,an=an+an+1.tinh
S=a1+a2+a3+.......+a2010
cho các số a1, a2, a3, ..., a2010 khác 0 thỏa mãn a11 + a2 + ... + a2010 khác 0 vàa1/a2 = a2/a3 = ... = a2010/a1 tính M =(a1+a2+...+a2010)^2/ (a1^2+a2^2+...+a2010^2)
a. Cho đoạn thẳng AA0 có độ dài bằng 1 ( đơn vị dài). Lấy các điểm A1, A2, A3, A4, . . . , A2011, A2012 lần lượt là trung điểm của các đoạn thẳng AA0, AA1, AA2, AA3, …, AA2012.Đặt S = AAO/AA1+AA0/AA2+AA0/AA3+AAO/AA4 ................ +AA0/AA2012.SO SÁNH S VỚI 2^2013
GIẢI CHI TIẾT NHÉ ! THANH YOU VERY MUCH
cho a1 +a2+...+a2013=0
và a1+a2=a3+a4=...=a2013+a1=1
tính a1 chia cho a2013
Giúp mình nhe! 1;2;3;..;2013 là số thứ tự đó
cho a^2+a+1=0 . Tính tổng a2011+1/a2011
Từ \(a^2+a+1=0\Rightarrow a\ne1\)\(\Rightarrow\left(a-1\right)\left(a^2+a+1\right)=0\Rightarrow a^3-1=0\Rightarrow a^3=1\)
Ta có \(a^{2011}+\frac{1}{2011}=a.a^{2010}+\frac{1}{a.a^{2010}}=a.\left(a^3\right)^{670}+\frac{1}{a.\left(a^3\right)^{670}}=a+\frac{1}{a}=\frac{a^2+1}{a}=\frac{-a}{a}=-1\)
Trong trường hợp này a không còn là số thực nữa mà a trong trường số phức .
a2 + a + 1 = a2 + 2.a.0,5+ (0,5)2 + 0,75 = (a + 0,5)2 + 0,75 = 0
=> (a + 0,5)2 = -0,75 mà\(\left(a+0,5\right)^2\ge0\Rightarrow\)Ko có x thỏa mãn nên ko tính được tổng a2011 + 1/a2011
Cmr:bb2012+1 là số cp và b là số lẻ
Cho a1,a2,..............a2013, biết ak= 2k+1/(k2+k)2 với mọi k = 1,2,3,4,.........2013
Tính tổng S=a1 +a2+a3+.........+a2013