Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dang  nhat minh
Xem chi tiết
Tiểu Thư họ Nguyễn
24 tháng 1 2017 lúc 10:07

Giả sử tích (a1−b1)(a2−b2)...(a2013−b2013) là số lẻ

Khi đó tất cả các hiệu (a1−b1,a2−b(a1−b1,a2−b2,...,an−bn)">) lẻ
Mà có 2013 hiệu nên tổng các hiệu a1−b1+a2−b2+...+a2013−b2013 lẻ
Hay (a1+a2+...+a2013)−(b1+b2+...+b2013) lẻ . (*)
Mặt khác , theo đề ra ta có : (a1+a2+...+a2013)−(b1+b2+...+b2013) = 0 ( mâu thuẫn với *)
Vậy điều giả sử sai hay (a1−b1)(a2−b2)...(a2013−b2013) là số chẵn
Hoàng Quốc Anh
24 tháng 1 2017 lúc 11:33

Thank you Tiểu Thư họ Nguyễn và Đặng Nhật Minh

Đạt Nguyễn
Xem chi tiết
Le Phuc Thuan
Xem chi tiết
NGUYỄN THẾ HIỆP
20 tháng 2 2017 lúc 18:21

Tỷ lệ thức này sai nhé!

Đúng thì phải theo kết quả của lời giải này nhé!

Ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2010}}{a_{2011}}=k\Rightarrow k^{2010}=\frac{a_1.a_2...a_{2010}}{a_2.a_3...a_{2011}}=\frac{a_1}{a_{2011}}\)

Mà \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2010}}{a_{2011}}=k=\frac{a_1+a_2+...+a_{2010}}{a_2+a_3+...+a_{2011}}\)

Vậy \(\frac{a_1}{a_{2011}}=\left(\frac{a_1+a_2+...+a_{2010}}{a_2+a_3+...+a_{2011}}\right)^{2010}=k^{2010}\)

Nguyễn Đức Dương
Xem chi tiết
le vu nhat minh
13 tháng 4 2018 lúc 21:42

hinh nhu sai de

Dương Văn Thái
Xem chi tiết
ađfd
Xem chi tiết
Bae joo-hyeon
Xem chi tiết
Lê Ngọc LAn
Xem chi tiết
Hoàng Lê Bảo Ngọc
12 tháng 10 2016 lúc 21:49

Từ \(a^2+a+1=0\Rightarrow a\ne1\)\(\Rightarrow\left(a-1\right)\left(a^2+a+1\right)=0\Rightarrow a^3-1=0\Rightarrow a^3=1\)

Ta có \(a^{2011}+\frac{1}{2011}=a.a^{2010}+\frac{1}{a.a^{2010}}=a.\left(a^3\right)^{670}+\frac{1}{a.\left(a^3\right)^{670}}=a+\frac{1}{a}=\frac{a^2+1}{a}=\frac{-a}{a}=-1\)

Trong trường hợp này a không còn là số thực nữa mà a trong trường số phức .

Phan Thanh Tịnh
12 tháng 10 2016 lúc 21:41

a2 + a + 1 = a2 + 2.a.0,5+ (0,5)2 + 0,75 = (a + 0,5)2 + 0,75 = 0

=> (a + 0,5)2 = -0,75 mà\(\left(a+0,5\right)^2\ge0\Rightarrow\)Ko có x thỏa mãn nên ko tính được tổng a2011 + 1/a2011

CHU ANH TUẤN
Xem chi tiết
nguyen thua tuan
Xem chi tiết