Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quốc Gia Huy
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Trần Phạm Minh Anh
Xem chi tiết
Trí Tiên亗
24 tháng 4 2021 lúc 10:47

Ta có \(\left(n^2-8\right)^2+36=n^4-16n^2+100=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)

Để \(\left(n^2-8\right)^2+36\)là số nguyên tố thì \(\hept{\begin{cases}n^2-6n+10=1\\n^2+6n+10=1\end{cases}}\)

Do \(n\in N\Rightarrow n^2+6n+10>n^2-6n+10\)

Có \(n^2-6n+10=1\Leftrightarrow n^2-6n+9=0\Leftrightarrow\left(n-3\right)^2=0\)

\(\Rightarrow n=3\)

Vậy với n = 3 thì \(\left(n^2-8\right)^2+36\) là số nguyên tố

Khách vãng lai đã xóa
Nguyễn Huy Tú
24 tháng 4 2021 lúc 12:40

\(\left(n^2-8\right)^2+36=n^4-16n^2+100=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)

Để \(\left(n^2-8\right)^2+36\)là số nguyên tố thì 

\(n^2+6n+10\)là số nguyên tố và \(n^2-6n+10=1\)

\(\Leftrightarrow n^2-6n+9=0\Leftrightarrow\left(n-3\right)^2=0\Leftrightarrow n=3\)

Khách vãng lai đã xóa
Gae Song
Xem chi tiết
Trí Phạm
Xem chi tiết
zZz Cool Kid_new zZz
5 tháng 3 2020 lúc 11:03

Vừa làm vừa nháp nên bạn chú ý nhé ! 

ít nhất 1 trong 3 số bằng 1 thì ta nghĩ đến \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

\(=\left(ab-a-b+1\right)\left(c-1\right)\)

\(=abc-ab-ac-bc+a+b+c-1\)

\(=a+b+c-ab-bc-ca\) ( 1 )

Biến đổi giả thiết:\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow a+b+c=\frac{ab+bc+ca}{abc}=ab+bc+ca\)

Khi đó ( 1 ) = 0 => đpcm

a

\(\left(n^2-8\right)^2+36\)

\(=n^4-16n^2+64+36\)

\(=\left(n^4+20n^2+100\right)-36n^2\)

\(=\left(n^2+10\right)^2-\left(6n\right)^2\)

\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)

Để \(\left(n^2-8\right)^2+36\) là SNT thì \(n^2-6n+10=1\left(h\right)n^2+6n+10=1\)

Mà n là số tự nhiên nên \(n^2+6n+10>n^2-6n+10\)

\(\Rightarrow n^2-6n+10=1\Leftrightarrow n^2-6n+9=0\)

\(\Leftrightarrow\left(n-3\right)^2=0\Leftrightarrow n=3\)

Thay n=3 vào cái ban đầu ta được \(\left(n^2-8\right)^2+36=37\) ( là số nguyên tố )

Khách vãng lai đã xóa
Đặng Tú Phương
5 tháng 3 2020 lúc 11:09

b/\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow a+b+c=\frac{ab+bc+ca}{abc}\)

\(\Rightarrow a+b+c=ab+bc+ca\)

\(\Rightarrow a+b+c-ab-bc-ca=0\)

\(\Rightarrow abc+a+b+c-ab-bc-ca-1=0\)

\(\Rightarrow\left(a-ab\right)+\left(b-1\right)+\left(c-bc\right)+\left(abc-ac\right)=0\)

\(\Rightarrow-a\left(b-1\right)+\left(b-1\right)-c\left(b-1\right)+ac\left(b-1\right)=0\)

\(\Rightarrow\left(b-1\right)\left(-a+1-c+ac\right)=0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)

<=> a-1 =0 hoặc b-1 =0 hoặc c-1=0

<=> a=1 hoặc b=1 hoặc c=1 

Vậy trong 3 số a,b,c có ít nhất 1 số bằng 1

Khách vãng lai đã xóa
Selina Joyce
Xem chi tiết
Trương Trọng Tiến
Xem chi tiết
alibaba nguyễn
28 tháng 6 2017 lúc 16:52

\(A=\left(x^2-8\right)^2+36=\left(x^2-6x+10\right)\left(x^2+6x+10\right)\)

Điều kiện cần để A nguyên tố là:

\(\orbr{\begin{cases}x^2-6x+10=1\\x^2+6x+10=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Điều kiện đủ: Thế lại A ta được

\(A=37\) vậy thỏa bài toán

Chương Phan
Xem chi tiết
kagamine rin len
Xem chi tiết
Tuấn
4 tháng 12 2016 lúc 15:37

\(A=n^4-16n^2+64+36=n^4+20n^2+100-36n^2=\left(n^2+10\right)^2-36n^2=\left(n^2+6n+10\right)\left(n^2-6n+10\right)\)
A là số nguyên tố và \(n^2+6n+10>n^2-6n+10\) với mọi n nguyên dương
\(\Rightarrow\hept{\begin{cases}n^2-6n+10=1\\n^2+6n+10=A\end{cases}}\). Đến đây đơn giản rồi nhỉ

Thắng Nguyễn
4 tháng 12 2016 lúc 10:29

Bài 1:

Ta có: \(a^2-ab+b^2=\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

Nên \(\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{\left(a+b\right)^2}{4}}=\frac{a+b}{2}\)

\(\Rightarrow2\sqrt{a^2-ab+b^2}\ge a+b\left(1\right)\).Ta cũng có:

\(a^2-2ac+4c^2=\frac{3}{4}\left(a-2c\right)^2+\frac{1}{4}\left(a+2c\right)^2\ge\frac{1}{4}\left(a+2c\right)^2\)

Nên \(\sqrt{a^2-2ac+4c^2}\ge\frac{a+2c}{2}\left(2\right)\), tương tự ta cũng có \(\sqrt{b^2-2bc+4c^2}\ge\frac{b+2c}{2}\left(3\right)\)

Cộng theo vế của (1),(2) và (3) ta được

\(2\sqrt{a^2-ab+b^2}+\sqrt{a^2-2ac+4c^2}+\sqrt{b^2-2bc+4c^2}\)

\(\ge a+b+\frac{a+2c}{2}+\frac{b+2c}{2}=4c+\frac{a+b}{2}+\frac{4c}{2}=4c+2c+2c=8c\)

Suy ra điều phải chứng minh

Dấu "=" khi \(\hept{\begin{cases}a=b\\a=2c\\b=2c\end{cases}}\Leftrightarrow a=b=2c\)