5+5+5+5+5+5+5+5+5+5+5+5+5+5=?có chia hết cho 100 không
5+5+5+5+5+5+5+5+5+5+5=? có chia hết cho 100 không
mình nghĩ là không chia hết
ai k cho mình mình k lại
chúc bạn học giỏi nha
5+5+5+5+5+5+5+5+5+5+5+5+5+5=?có chia hết cho 100 không
Chứng minh rằng:
a) A = 5 + 5^2 + 5^3 + …+ 5^100 chia hết cho 5 nhưng không chia hết chi 25
b) B = 5 + 5^2 + 5^3 + …+ 5^20 chia hết cho 6
c) C = 5 + 5^2 + 5^3 + …+ 5^2022 + 5^2023 không chia hết cho 6
d) D = 1 + 2 + 2^2 + 2^3 + …+ 2^2021 chia hết cho 7
a) Ta có:
\( A = 5+5^2+5^3+\ldots+5^{100} \)
Để chứng minh A chia hết cho 5, ta xét tổng S = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 5).
Ta thấy rằng \( 5 \) chia hết cho 5, \( 5^2 \) chia hết cho 5, \( 5^3 \) chia hết cho 5, và tiếp tục như vậy cho tới \( 5^{100} \).
Vì vậy, ta có: \( S \equiv 0+0+0+\ldots+0 \equiv 0 \) (mod 5).
Do đó, A chia hết cho 5.
Để chứng minh A không chia hết cho 25, ta xét tổng T = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 25).
Ta thấy rằng \( 5 \) không chia hết cho 25, \( 5^2 \) không chia hết cho 25, \( 5^3 \) không chia hết cho 25, và tiếp tục như vậy cho tới \( 5^{100} \).
Vì vậy, ta có: \( T \equiv 5+0+0+\ldots+0 \equiv 5 \) (mod 25).
Do đó, A không chia hết cho 25.
b) Ta có:
\( B = 5+5^2+5^3+\ldots+5^{20} \)
Để chứng minh B chia hết cho 6, ta xét tổng U = \( 5+5^2+5^3+\ldots+5^{20} \) (mod 6).
Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{20} \).
Vì vậy, ta có: \( U \equiv 5+1+1+\ldots+1 \equiv 5 \) (mod 6).
Do đó, B chia hết cho 6.
c) Ta có:
\( C = 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \)
Để chứng minh C không chia hết cho 6, ta xét tổng V = \( 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \) (mod 6).
Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{2022} \) và \( 5^{2023} \).
Vì vậy, ta có: \( V \equiv 5+1+1+\ldots+1 \equiv 2 \) (mod 6).
Do đó, C không chia hết cho 6.
d) Ta có:
\( D = 1+2+2^2+2^3+\ldots+2^{2021} \)
Để chứng minh D chia hết cho 7, ta xét tổng W = \( 1+2+2^2+2^3+\ldots+2^{2021} \) (mod 7).
Ta thấy rằng \( 2 \) không chia hết cho 7, \( 2^2 \) chia hết cho 7, \( 2^3 \) không chia hết cho 7, \( 2^4 \) không chia hết cho 7, \( 2^5 \) không chia hết cho 7, \( 2^6 \) chia hết cho 7, và tiếp tục
mong mn cho minh vai xu :)))))))))))))))))))))))))))))))))
a, A = 5 + 52 + 53 + ... + 5100
A = 5. ( 1 + 5 + ...+ 599)
5 ⋮ 5 ⇒A = 5.(1 + 5 + ...+ 599) ⋮ 5 (1)
A = 5 + 52 + 53 + ... + 5100
A = 5 + 52.( 1 + 5 + 52 + ... + 598)
A = 5 + 25 . ( 1 + 5 + 52 +...+ 598)
Vì 25 ⋮ 25 nên 25.(1 + 5 + 52 +... + 598) ⋮ 25
5 không chia hết cho 25 nên
A = 5 + 25.( 1 + 5 +...+ 598) không chia hết cho 25 (2)
Kết hợp (1) và (2) ta có:
A ⋮ 5 nhưng không chia hết cho 25 (đpcm)
Câu 6. Nếu a không chia hết cho 5 và b chia hết cho 5 thì tổng
a+b sẽ:
A. Chia hết cho 5.
B. Không chia hết cho 5.
C. Có tận cùng là 5.
D. Có tận cùng là các số chia hết cho 5.
a không chia hết cho 5
b chia hết cho 5
⇒ a + b không chia hết cho 5
Cho S = 1+5+5^2+5^3+...+5^99+5^100
1.S có chia hết cho 3 không ? Vì sao ?
2.Tìm số tự nhiên n biết 4*S+1=5n+1
Nếu a chia hết cho 5, b chia hết cho 5, c không chia hết cho 5 thì tích a.b.c có chia hết cho 5 hay không
Nếu a chia hết cho 5, b chia hết cho 5, c không chia hết cho 5 thì tích a.b.c chia hết cho 5 . Vì trong tích nếu có một thừa số chia hết cho 5 thì cả tích đó cũng chia hết cho 5 .
Nếu trong 1 tích có 1 số chia hết cho 5 thì cả tích đó chia hết cho 5 !!!
Có bn ạ
Trong 1 tích chỉ cần 1 thừa số chhia hết cho 5 thì tích chiaq hết cho 5
Còn nếu là tổng thì trường hợp này ko chia hết
Tổng sau có chia hết cho 6 không ? vì sao ?
B= 5 + 52 + 53 + ... + 5100
B=5+52+53+54+...+599+5100
=(5+52)+(53+54)+...+(599+5100)
=5.(1+5)+53.(1+5)+...+599.(1+5)
=5.6+53.6+...+599.6
=6.(5+53+...+599) chia hết cho 6(vì trong tích có 1 thừa số là 6)
Chúc bạn học giỏi nha!!!
K cho mik vs nhé Trần Thị Hương
\(B=5+5^2+5^3+.....+5^{100}\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+.....+5^{99}\left(1+5\right)\)
\(=\left(1+5\right)\left(5+5^3+.....+5^{99}\right)\)
\(=6\left(5+5^3+.+5^{99}\right)\)chia hết cho 6
\(B=5+5^2+5^3+...+5^{100}\)
\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(B=5.\left(1+5\right)+5^2\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(B=5.6+5^2.6+...+5^{99}.6\)
\(B=\left(5+5^2+...+5^{99}\right).6\)
Vậy B chia hết cho 6
CMR
A=1+5+5^2+5^3+......+5^98+5^99 chia hết cho 6
B=1+5+5^2+5^3+......+5^99+5^100 ko chia hết cho 6
\(A=1+5+5^2+5^3+...+5^{99}\)
\(A=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)\)
\(A=6+5^2\cdot6+...+5^{98}\cdot6\)
\(A=6\left(1+5^2+...+5^{98}\right)⋮6\)
\(B=1+5+5^2+5^3+...+5^{100}\)
\(B=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)+5^{100}\)
\(B=6+6\cdot5^2+...+6\cdot5^{98}+5^{100}\)
\(B=6\left(1+5^2+...+5^{98}\right)+5^{100}\)
a ⋮ c; b không chia hết cho c => a + b không chia hết cho c
xét xem tổng hiệu sau có chia hết cho 2 không?Có chia hết cho 5 không?
a)(1.2.3.4.5.6.7+75)(dấu chia hết) 2 ?
(1.2.3.4.5.6.7+75)(dấuchia hết) 5 ?
b)(1.2.3.4.5.6.7-100)(dấuchia hết )2?
(1.2.3.4.5.6.7-100)( dấu chia hết) 5?
ai giúp với
Bài làm
a) ( 1.2.3.4.5.6.7 + 75 ) ( không chia hết cho ) 2
b) ( 1.2.3.4.5.6.7 + 75 ) ( chia hết cho ) 5
c) ( 1.2.3.4.5.6.7 - 100 ) ( chia hết cho ) 2
d) ( 1.2.3.4.5.6.7 - 100 ) ( chia hết cho ) 5
# Học tốt #