Cho hình bình hành ABCD có AB=AD. Gọi M, N lần lượt là trung điểm các cạnh AB, DC; đường chéo BD cắt AN, CM THEO THỨ TỰ Ở I VÀ K
a) tính góc DMC
Gọi P là giao điểmcủa AK và BC. CM PK.NA=PA.NI
cho hình bình hành ABCD, đường chéo BD. Gọi M,N lần lượt là trung điểm của các cạnh AB,AD. tìm tỉ số diện tích của tam giá AMN và hình bình hành ABCD
giup mình với , mình cần ngay nha
me mik là cung cự giải nè làm bn nha!
e cx cung cự giải nek
kết bạn lm quen đc ko ạ
cho hai hình bình hành ABCD đường chéo BD . gọi M,N lần lượt là trung điểm các cạnh AB và AD. tìm tỉ số diện tích của tam giác AMN và tam giác ABCD
hình bình hành ABCDcó cạnh đáy AB=6cm cạnh bên BC=4cm với M,N,P,Q lần lượt là trung điểm của các cạnh AB,DC,AD,BC.Hỏi
a)Hình trên có tất cả bn hình bình hành
b) Tổng chu vi của tất cả các hình bình hành trên = bn
a) Hình trên có tất cả 9 hình bình hành
b) Chu vi hình bình hành ABCD bằng: (4 + 6) x 2 = 20cm
Chu vi hình bình hành AMOQ, BMON, DPOQ và NOPC là: 20 : 4 = 5cm
Chu vi hình bình hành ABNQ, QNDC, AMDP và BMPC là: 20 : 2 = 10cm
Tổng chu vi là: 20 + 5 x 4 + 10 x 4 = 80cm
Cho hình bình hành ABCD (AB>BC). Trên các cạnh AB và DC lần lượt lấy hai điểm M và N sao cho AM = CN; (M và N không trùng với trung điểm của AB và CDF HÌNH BÌNH HÀNH ).MBND là các đường thẳng AC, BD, MN cùng cắt nhau tại một điểm
c) Lấy điểm E đối xứng với D qua A. Gọi P là trung điểm của AB. Chứng minh E và C đối xứng với nhau qua P
Bài 1. Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của BC và AD. C/m tứ giác BMDN là hình bình hành.
Bài 2. Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Gọi P là giao điểm của DM và AN. Gọi Q là giao điểm của CM và BN. C/m tứ giác PMQN là hình bình hành.
cho hình bình hành ABCD có AB = 2AD góc D = 70 độ . Vẽ BH vuông góc với AD ( H thuộc AD ) . Gọi M , N lần lượt lên trung điểm cạnh CD, AB
a, C/m tứ giác ANMD là hình thoi
b, Tính góc HMC
a: Xét tứ giác ANMD có
AN//MD
AN=MD
Do đó: ANMD là hình bình hành
mà AN=AD
nên ANMD là hình thoi
Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. G là trọng tâm của tam giác SAB. Thiết diện của hình chóp cắt bởi (IJG) là một tứ giác. Tìm điều kiện của AB, CD để thiết diện đó là hình bình hành?
A. AB=3CD
B. AB=2CD
C. CD=2AB
D. CD=3AB
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. Khi đó ABCD là hình bình hành nếu
A. M N → = A B →
B. M N → = D C →
C. M N → = A B → và M N → = D C →
D. D C → = A B →
Hình thang ABCD (AB//CD) có DC=2AB,Gọi M,N,P,Q lần lượt là trung điểm các cạnh AB,BC,Cd,DA
a)chứng minh các tứ giác ABPD , MNPQ là hình bình hành
b) tìm điều kiện của hình thang ABCD để MNPQ là hình thoi
c) gọi E là giao điểm của BD và AP.Chứng minh 2 điểm Q,N,E thẳng hàng