Những câu hỏi liên quan
Cao Nguyen Hang
Xem chi tiết
alibaba nguyễn
12 tháng 12 2017 lúc 13:41

\(\hept{\begin{cases}\frac{2}{2\sqrt{n}}< \frac{2}{\sqrt{n-1}+\sqrt{n}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\\\frac{2}{2\sqrt{n}}>\frac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\end{cases}}\)

Từ đây ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}< 2\left(\sqrt{1}-\sqrt{0}+\sqrt{2}-\sqrt{1}+...+\sqrt{n}-\sqrt{n-1}\right)\)

\(=2\left(\sqrt{n}-0\right)=2\sqrt{n}\)

Tương tự ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\right)\)

\(=2\left(\sqrt{n+1}-1\right)>\sqrt{n}\)

Bình luận (0)
Ngoc Nguyen
12 tháng 12 2017 lúc 19:10

Gọi \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}=A\)là A

Có \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{3}}>...>\frac{1}{\sqrt{n}}\)

=> \(A>n.\frac{1}{\sqrt{n}}=\sqrt{n}\)(1)

Ta có: \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=2\left(\sqrt{n}+\sqrt{n-1}\right)\)

=> \(\frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Khi đó: \(\frac{1}{\sqrt{1}}< 2\left(\sqrt{1}-\sqrt{0}\right)\)

\(\frac{1}{\sqrt{2}}< 2\left(\sqrt{2}-\sqrt{1}\right)\)

...

\(\frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

=> \(A< 2\left(\sqrt{n}-\sqrt{n-1}+...+\sqrt{1}\right)\)

=> \(A< 2\sqrt{n}\)(2)

Từ (1) và (2) => \(\sqrt{n}< A< 2\sqrt{n}\)

Bình luận (0)
nguyenthithuytien
Xem chi tiết
Phạm Bá Tâm
Xem chi tiết
Nguyễn Đăng Nhân
26 tháng 2 2022 lúc 16:57

 Xét số hạng tổng quát ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)< \sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\sqrt{n}\cdot\frac{2}{\sqrt{n}}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

Áp dụng vào bài tập, ta có:

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+...+\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

\(=2-\frac{2}{\sqrt{n+1}}< 2\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
ĐẶng Trung Kiên
Xem chi tiết
Angela jolie
Xem chi tiết
Huy vũ quang
Xem chi tiết
Ngô Hoài Thanh
Xem chi tiết
alibaba nguyễn
11 tháng 8 2016 lúc 15:32
Bài chứng minh ghi phức tạp lắm mà mình dùng điện thoại nên không ghi được. Còn số nguyên tố đó là 2 nhé
Bình luận (0)
Ngô Hoài Thanh
11 tháng 8 2016 lúc 16:04

Vay ban ghi cach lam duoc khong 

Bình luận (0)
Mr Lazy
11 tháng 8 2016 lúc 16:41

\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}}{\sqrt{n}.\sqrt{n+1}}=\frac{1}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(>\frac{1}{\sqrt{n}.\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n+1}\right)}=\frac{1}{2\left(n+1\right).\sqrt{n}}\)

Suy ra \(\text{Tổng }=...< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{199}}-\frac{1}{\sqrt{200}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{200}}\right)< 2\)

Một số < 2 thì hiển nhiên ko phải là một số nguyên tố (SNT nhỏ nhất là 2)

Bình luận (0)
Hồ Minh Phi
Xem chi tiết
kagamine rin len
Xem chi tiết