Cho a/b= c/d (a, b, c, d khác 0) chứng minh rằng a-b/b=c-d/d
Bài 1
a) Cho ba số a, b, c dương . Chứng tỏ rằng M = a/a+b + b/b+c + c/a+c không là số nguyên
b) Cho tỉ lệ thức a/b =c/d ( b,d khác 0 ; a khác -c ; b khác -d ) . Chứng minh: (a+b/c+d)^2 = a^2+b^2/c^2+d^2
c) Cho 1/c = 1/2(1/a+1/b) (Với a, b, c khác 0; b khác c). Chứng minh rằng: a/b=a-c/c-b
cho a,b,c,d khác 0 , a+b+c+d khác0 và a/b+c khác b/a+c=c/a+b chứng minh rằng a=b=c=d
Cho a/b=c/d (a,b,c,d khác 0,a khác b,c khác d)
Chứng minh rằng:
a)a/a-b=c/d-c
Cho a/b=c/d (a,b,c khác 0, a khác b, c khác d)
Chứng minh rằng a/a - b=c/c - d
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=>\(\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Vậy ta có đpcm
--------
T cấm con Nhok _Yến Nhi 12 copy bài của t nữa đấy!
có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=> \(\frac{a}{c}=\frac{a-b}{c-d}=>\frac{a}{a-b}=\frac{c}{c-d}\)
k cho mik ha
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có:
\(\frac{a}{b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
\(\frac{c}{d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
Vậy nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a}{a-b}=\frac{c}{c-d}\)
cho a/b = c/d ( a,b,c,d thuộc Z và b,d khác 0 ). Chứng minh rằng a+b/b = c+d/d
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\)\(\frac{a+b}{b}=\frac{c+d}{d}\)
cho a / b = c/ d (a,b,c,d khác 0 ; a khác b ; c khác d ) Chứng Minh rằng
a. a + b /b = c + d / d
b. a / a - b = c / d - c
a) \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\)
\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
b) Mình sửa lại là \(\frac{a}{a-b}=\frac{c}{c-d}\) nha!
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\)
\(\Rightarrow1-\frac{b}{a}=1-\frac{d}{c}\)
\(\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
cho a / b = c/ d (a,b,c,d khác 0 ; a khác b ; c khác d ) Chứng Minh rằng
a. a + b /b = c + d / d
b. a / a - b = c / d - c
a) Ta có: \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
b Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
Từ \(\frac{a}{c}=\frac{a-b}{c-d}\) \(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
bằng 3 các(giả thiết a khác b;c khác d và mỗi số a,b,c,d khác 0)
Cách 1:
Ta xét tích a(c-d) và c(a-b)
Ta có: a(c-d)=ac-ad (1)
c(a-b)=ac-bc(2)
Ta lại có \(\dfrac{a}{c}=\dfrac{c}{d}\)=>ad=bc (3)
Từ (1), (2), (3) ta có a(c-d)=c(a-d). Do đó \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Cách 2:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)=k thì a=bk, c=dk.
Xét \(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)
Xét \(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)
Từ (1) và (2)=> \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Cách 3: Ta có
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)
Aps dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a-b}{c-d}\)
=>\(\dfrac{a}{c}=\dfrac{a-b}{c-d}=>\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Leftrightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\)
\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\)
\(\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
hay \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)(đpcm)
Chứng minh rằng nếu a+b/b+c =c+d/d+a (c+d khác 0) thì a=c và a+b+c+d=0