Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Nghĩa
Xem chi tiết
Chính Nguyễn
Xem chi tiết
vu tien dat
Xem chi tiết
vũ tiền châu
27 tháng 4 2018 lúc 23:23

1) Áp dụng BĐT bunhia, ta có 

\(P^2\le3\left(6a+6b+6c\right)=18\Rightarrow P\le3\sqrt{2}\)

Dấu = xảy ra <=> a=b=c=1/3

Phạm Minh Quang
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
Bùi Chí Phương Nam
Xem chi tiết
Phước Nguyễn
9 tháng 8 2016 lúc 16:15

\(a.\) 

\(\text{*)}\) Áp dụng bđt  \(AM-GM\)  cho hai số thực dương  \(x,y,\)  ta có:

\(x+y\ge2\sqrt{xy}=2\)  (do  \(xy=1\)  )

\(\Rightarrow\)  \(3\left(x+y\right)\ge6\)

nên  \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)

\(\Rightarrow\)  \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)

\(\text{*)}\)  Tiếp tục áp dụng bđt  \(AM-GM\)  cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\)  ta có:

\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)

Do đó,  \(D\ge6+5=11\)

Dấu  \("="\)  xảy ra khi  \(x=y=1\)

Vậy,  \(D_{min}=11\)  \(\Leftrightarrow\)  \(x=y=1\)

\(b.\) Bạn tìm điểm rơi rồi báo lại đây

Mr Lazy
9 tháng 8 2016 lúc 17:49

b

\(8\sqrt{x-1}=4.2.\sqrt{x-1}.1\le4.\left(x-1+1\right)=4x\)

\(x.\sqrt{16-3x^2}\le\frac{x^2+16-3x^2}{2}=8-x^2\)

\(\Rightarrow y\le4x-x^2+8=-\left(x-2\right)^2+12\le12\)

Dấu bằng xảy ra khi \(x=2\)

ngAn thu
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 2 2020 lúc 0:47

Cần thêm điều kiện \(x>\frac{1}{2}\) nếu ko hàm ko tồn tại GTNN

Nếu \(x>\frac{1}{2}\)

\(y=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{5\left(2x-1\right)}{6\left(2x-1\right)}}+\frac{1}{6}=\frac{1}{6}+\frac{\sqrt{30}}{3}\)

Dấu "=" xảy ra khi \(\frac{2x-1}{6}=\frac{5}{2x-1}\Rightarrow x=\frac{1+\sqrt{30}}{2}\)

Khách vãng lai đã xóa
Nguyễn Tuấn Dũng
Xem chi tiết
Stepht Chim Ry
Xem chi tiết