Tìm GTLN và GTNN của hàm số:
\(y=\frac{1}{2}\sin x+\frac{\sqrt{3}}{2}\cot x\)
\(y=\sqrt{\sin^2x+2\cot^2x}\)
Biết \(y^2+yz+z^2=1-\frac{3x^2}{2}\). Tìm GTLN,GTNN của A=x+y+z
a) Cho x;y dương thỏa mãn xy=1. Tìm GTNN: D= x2+3x+y2+3y+\(\frac{9}{x^2+y^2+1}\)
b) Với \(1\le x\le\frac{4\sqrt{3}}{3}\)Tìm GTLN của y=\(8\sqrt{x-1}+x\sqrt{16-3x^2}\)
c3: cho x+y=15, tìm giá tị nhỏ nhất , lớn nhất của biểu thức:
B=căn (x-4) + căn (y-3)
c4: tìm GTNN của biểu thức A= (2x^2 - 6x + 5) / 2x
c5: cho a, b, x là những số dương. tìm GTNN của :
P= [(x+a)(x+b)]/x
a) Cho x+y=1. Tìm giá trị nhỏ nhất của biểu thức x3+y3
b) Cho 3 số dương x, y, z thỏa mãn điều kiện x+y+z=2. Tìm GTNN của biểu thức: P=\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}\)
cho x, y, z lớn hơn hoặc bằng 0 thỏa mãn điều kiện x+y+z = a
a, tìm GTLN của A= xy+yz+xz
b, tìm GTNN của B= x^2+y^2+z^2
Tìm GTLN và GTNN của biểu thức \(A=\frac{\sqrt{x-4}}{2x}\)
Cho các số thực x,y,z thỏa mãn x+y+z=5 và xy+yz+zx=8. Tìm GTLN,GTNN của x,y,z
cho x,y,z>0 thoả mãn xyz=1. Tìm GTLN của:
\(A=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)