Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lan Anh Nguyễn
Xem chi tiết
Dũng Nguyễn
Xem chi tiết
Hoàng Hải Đăng
Xem chi tiết
daica
27 tháng 6 2016 lúc 21:54

oho

No_pvp
12 tháng 7 2023 lúc 16:34

Mày nhìn cái chóa j

Giang Nguyễn Hương
Xem chi tiết
Hồ Đức Huy
23 tháng 3 2020 lúc 14:02

AYUASGSHXHFSGDB HAGGAHAJF

Khách vãng lai đã xóa
Yim Yim
Xem chi tiết
Trà My
28 tháng 9 2017 lúc 16:30

\(\left(\frac{x}{x-1}\right)^2+\left(\frac{x}{x+1}\right)^2=\frac{10}{9}\Leftrightarrow\frac{x^2}{\left(x-1\right)^2}+\frac{x^2}{\left(x+1\right)^2}=\frac{10}{9}\)

\(\Leftrightarrow\frac{x^2\left(x+1\right)^2+x^2\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}=\frac{10}{9}\Leftrightarrow\frac{x^2\left[\left(x+1\right)^2-\left(x-1\right)^2\right]}{\left[\left(x-1\right)\left(x+1\right)\right]^2}=\frac{10}{9}\)

\(\Leftrightarrow\frac{x^2\left(x+1-x+1\right)\left(x+1+x-1\right)}{\left(x^2-1\right)^2}=\frac{10}{9}\Leftrightarrow\frac{x^2.2.2x}{x^4-2x^2+1}=\frac{10}{9}\)

\(\Leftrightarrow36x^3=10x^4-20x^2+10\Leftrightarrow18x^3=5x^4-10x^2+5\Leftrightarrow5x^4-18x^3-10x^2\)+5=0

đến đây tự giải tiếp

Cô Hoàng Huyền
28 tháng 9 2017 lúc 15:49

ĐK:\(x\ne1;x\ne-1\)

\(pt\Leftrightarrow\frac{x^2}{\left(x-1\right)^2}+\frac{x^2}{\left(x+1\right)^2}=\frac{10}{9}\)

\(\Leftrightarrow\frac{9x^2\left(x+1\right)^2+9x^2\left(x-1\right)^2-10\left(x-1\right)^2\left(x+1\right)^2}{9\left(x-1\right)^2\left(x+1\right)^2}=0\)

\(\Leftrightarrow9x^2\left(x+1\right)^2+9x^2\left(x-1\right)^2-10\left(x-1\right)^2\left(x+1\right)^2=0\)

\(\Leftrightarrow9x^4+18x^3+9x^2+9x^4-18x^3+9x^2-10x^4+20x^2-10=0\)

\(\Leftrightarrow8x^4+38x^2-10=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=\frac{1}{4}\\x^2=5\left(l\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

Trà My
28 tháng 9 2017 lúc 16:32

bài sai nguyên tập, mắt lé nhìn + thành -

xin lỗi :((

Thu Thủy vũ
Xem chi tiết
Con Chim 7 Màu
13 tháng 3 2019 lúc 19:03

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left[\left(x^2+\frac{1}{x^2}\right)-\left(x+\frac{1}{x}\right)^2\right]=\left(x+4\right)^2.ĐKXĐ:x\ne0\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}-x^2-2-\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left[\left(x+\frac{1}{x}\right)^2-\left(x^2+\frac{1}{x^2}\right)\right]=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x^2+2+\frac{1}{x^2}-x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow16=\left(x+4\right)^2\)

\(\Leftrightarrow x^2+8x+16=16\)

\(\Leftrightarrow x^2+8x=0\)

\(\Leftrightarrow x\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=-8\left(n\right)\end{cases}}\)

V...\(S=\left\{-8\right\}\)

^^

Con Chim 7 Màu
13 tháng 3 2019 lúc 19:05

bạn ghi sai đề ở chỗ \(\left(x+\frac{1}{x}\right)^2\)chứ ko phải \(\left(x+\frac{1}{x^2}\right)^2\)nhé

Chinh Bùi
Xem chi tiết
Bùi Việt Anh
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Le Hong Phuc
27 tháng 4 2019 lúc 19:01

ĐK: x khác 0
Đặt \(x+\frac{1}{x}=a\)\(\Rightarrow\left(x+\frac{1}{x}\right)^2=a^2\Leftrightarrow a^2=x^2+\frac{1}{x^2}+2\cdot x\cdot\frac{1}{x}\Leftrightarrow a^2-2=x^2+\frac{1}{x^2}\)

Có:

\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\)
\(=8a^2+4\left(a^2-2\right)^2-4\left(a^2-2\right)a^2\)
\(=8a^2+4\left(a^4-4a^2+4\right)-4\left(a^4-2a^2\right)\)
\(=8a^2+4a^4-16a^2+16-4a^4+8a^2=16\)

Thay \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=16\)

  vào phương trình, ta có:  \(\left(x-4\right)^2=16\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=-4\\x-4=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=8\end{cases}}\)Mà điều kiện x khác 0 nên x=8

Vậy phương trình có nghiệm x=8