Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Trà My
Xem chi tiết
🌼K.L🌼
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 5 2017 lúc 2:37

Trong tam giác vuông ADM có

DM = AD.sin(DAM) = b.sin 60 °  = (b 3 )/2.

Trong tam giác vuông DCN (N là giao điểm của đường phân giác góc D và đường phân giác góc C) có DN = DCsin(DCN) = a.sin 60 °  = (a 3 )/2.

Vậy MN = DN – DM = (a – b). 3 /2.

Trong tam giác vuông DCN có CN = CD.cos 60 °  = a/2. Trong tam giác vuông BCP (P là giao của đường phân giác góc C với đường phân giác góc B) có CP = CB.cos 60 °  = b/2. Vậy NP = CN – CP = (a-b)/2.

Suy ra diện tích hình chữ nhật MNPQ là:

MN x NP = a - b 2 . 3 / 4

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Thanh Tùng
Xem chi tiết
lại hoàng anh
Xem chi tiết
người bán squishy
3 tháng 8 2017 lúc 18:10

giúp mình bài này với

1 phần 2 x4x6 x 1 phhàn 4x6x8 x 1 6x8x10 x...x1phần 50nhân 52 nhân 54

Nguyễn Thị Thảo
Xem chi tiết
Nguyễn Thảo Vy
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hoang Hung Quan
29 tháng 4 2017 lúc 10:20

A D M N P Q B C

Giải:

Ta có: \(\widehat{DAB}=120^0\left(gt\right)\) nên \(\widehat{ADC}=60^0\)

Đường phân giác của \(\widehat{A}\) cắt đường phân giác của \(\widehat{D}\) tại \(M\) thì \(\Delta ADM\) có hai góc bằng \(60^0\)\(30^0\) nên các đường phân giác đó vuông góc với nhau.

Lập luận tương tự chứng tỏ tứ giác \(MNPQ\)\(4\) góc vuông nên nó là hình chữ nhật.

Trong tam giác vuông \(ADM\) có:

\(DM=AD\sin\widehat{DAM}=b\sin60^0=\dfrac{b\sqrt{3}}{2}\)

Trong tam giác vuông \(DCN\) và có:

\(DN=DC\sin\widehat{DCN}=a\sin60^0=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow MN=DN-DM=\left(a-b\right)\dfrac{\sqrt{3}}{2}\)

Trong tam giác vuông \(DCN\)\(CN=CD\cos60^0=\dfrac{a}{2}\)

Trong tam giác vuông \(BCP\)\(CP=CB\cos60^0=\dfrac{b}{2}\)

Vậy \(NP=CN-CP=\dfrac{a-b}{2}\)

Suy ra diện tích hình chữ nhật \(MNPQ\) là:

\(MN.NP=\left(a-b\right)^2\dfrac{\sqrt{3}}{4}\left(đvdt\right)\)

Nguyen Thuy Hoa
31 tháng 5 2017 lúc 10:32

Ôn tập Hệ thức lượng trong tam giác vuông