Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Phương Thảo
Xem chi tiết
Park Young Mi
Xem chi tiết
Công chúa sinh đôi
20 tháng 11 2016 lúc 10:21

* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa * Xét: p # 3 Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3 p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3 Vậy: (8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3 vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3 => 8p+1 là hợp số ---------- Cách khác: phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1) xét 3 số nguyên liên tiếp: p-1, p, p+1 p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên) => p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3  tk mình nhé

Park Young Mi
20 tháng 11 2016 lúc 10:24

cho mik hỏi z p có mấy dạng, là những dạng nào

Thành Hoàng
Xem chi tiết
Lại Hà Phương
Xem chi tiết
Đoàn Đức Hà
30 tháng 9 2021 lúc 13:20

Với \(p=3\)\(8p-1=23\)là số nguyên tố thỏa mãn, \(8p+1=25\)chia hết cho \(5\), là hợp số.

Với \(p\ne3\)

Do \(p\)là số nguyên tố nên \(p⋮̸3\Rightarrow8p⋮̸3\).

Có \(8p-1,8p,8p+1\)là ba số tự nhiên liên tiếp nên có ít nhất một số chia hết cho \(3\)mà \(8p-1\)là só nguyên tố nên không chia hết cho \(3\)(do \(8p-1\ne3\)), \(8p⋮̸3\)suy ra \(8p+1\)chia hết cho \(3\).

Mà dễ thấy \(8p+1>3\)do đó \(8p+1\)là hợp số. 

Khách vãng lai đã xóa
Hồng Luyến
Xem chi tiết
Ngô Tuấn Vũ
12 tháng 10 2015 lúc 14:58

* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa 

* Xét: p # 3 
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3 
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3 

Vậy: 
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3 
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3 
=> 8p+1 là hợp số 
---------- 
Cách khác: 
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1) 
xét 3 số nguyên liên tiếp: p-1, p, p+1 
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên) 
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3

trần kiên
25 tháng 10 2016 lúc 21:13

dễ ko thèm làm

Trần Ngọc Anh
7 tháng 12 2016 lúc 12:46

Thieu 1 vai cho do

GoKu Đại Chiến Super Man
Xem chi tiết
Lê Thị Bích Tuyền
27 tháng 7 2015 lúc 7:25

* Xét: p \(\ne\)3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp

  \(\Rightarrow\)phải có 1 số chia hết cho 3.
8p -1 và 8p > 3 không chia hết cho 3
\(\Rightarrow\) 8p + 1 chia hết cho 3 và > 3
\(\Rightarrow\) 8p + 1 là hợp số

Nguyễn Yến Nhi
Xem chi tiết
Đức Nhật Huỳnh
Xem chi tiết
Heartilia Hương Trần
25 tháng 11 2016 lúc 11:49

+ Nếu p = 3 thì 8p+1 = 8.3.+1 = 25

- p khác 3 vì p là số nguyên tố

=) p có 2 dạng: 3k+1, 3k+2

- Với p = 3k+ 1 =) 8p + 1 =8 (3k+1 ) + 1

= (24k+9) chia hết cho 3

Vì 8p+1 >3 =) 8p+1 là hợp số

Với p = 3k+2 =) 8p-1 = 8(3k+2) -1

= (24k+ 15 )

= 3 (8k+2) chia hết cho 3

Mà 8p - 1 là số nguyên tố và 8p-1 > 3

=) vô lý

=) p = 3k+2 (loại)

Vậy 8p+ 1 là hợp số

 

Nguyễn Việt Anh
25 tháng 11 2016 lúc 18:55

Số 8 nhân bất kì cho số nào cũng là một số chẵn

Vậy chắc chắn chia hết cho 2

5% là chia hết cho 4, 5 ,6, 8 ..mình cũng ko chả biết nhiều đâu

Ta có : 8p - 1 = số lẻ . Vậy : 8p : hết 2;4;5;6;8...

1 : hết 1

=> { 8p -1 } : hết cho chắc chắn là một số bất kì nào đó . VD :

8.5 -1 = 15 : 3 = 6 .

Vậy nên 8p - 1 là hợp số

Hoàng Lê Bảo Ngọc
25 tháng 11 2016 lúc 19:38

Nếu p = 3 thì 8p-1 = 23 là số nguyên tố và 8p+1 = 25 là hợp số (thỏa mãn)

Với p > 3 :

Xét ba số nguyên liên tiếp : 8p-1 , 8p , 8p+1 . Trong ba số này ta ắt hẳn sẽ tìm được duy nhất một số chia hết cho 3.

Vì 8p-1 là số nguyên tố và lớn hơn 3 nên không chia hết cho 3.

p là số nguyên tố (p>3) nên 8p không chia hết cho 3

Vậy 8p+1 chia hết cho 3 . Mà 8p+1 > 3 nên không thể là số nguyên tố, hay nói cách khác 8p+1 là hợp số.

nguyễn thu hiền
Xem chi tiết
Trịnh Tiến Đức
31 tháng 10 2015 lúc 20:25

Ta có  : 3 số 8p-1; 8p; 8p + 1 là 3 số tự nhiên liên tiếp  

Vi  tích của 3 số tự nhiên liên tiếp thì chia hết cho 3 

=>  (8p-1). 8p. (8p+1) chia hết cho 3

mà 8p ; 8p - 1 không chia hết cho 3 =>  8p+ 1  chia hết cho 3 => 8p+1 là số nguyên tố