Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dat
Xem chi tiết
Nguyễn Thị Bích Ngọc
8 tháng 7 2019 lúc 18:55

Tham khảo:

Câu hỏi của Ngọc Nguyễn Ánh - Toán lớp 9 - Học toán với OnlineMath

Học tốt.

Lê Kiều Chinh
Xem chi tiết
PTTD
Xem chi tiết
Họ Và Tên
27 tháng 8 2021 lúc 8:20

a,theo định lý pytago đảo tính dc A=90

các góc còn lại tính bằng máy tính nha bạn.bạn lấy máy tính bấm \(sin^{-1}\)(cạnh đối/cạnh huyền) là ra góc cần tính nha bạn

b,ah vuông góc bc mà tam giác abc vuông tại a nên

   \(AB^2=BH.BC\Rightarrow100=BH.26\Rightarrow BH=\dfrac{50}{13}\)

   \(\Rightarrow CH=BC-BH=\dfrac{288}{13}\)

\(\Rightarrow AH^2=BH.CH=\dfrac{14400}{169}\Rightarrow AH=\dfrac{120}{13}\)

tick mik nha bn

Lalisa Manoban
Xem chi tiết
lê đức anh
23 tháng 12 2019 lúc 20:36

dựa theo định lý pitago,ta có

\(AB^2+AC^2=BC^2\)

10\(^2\)+AC\(^2\)=12,5\(^2\)

            AC\(^2\)=156,25-100=56,25

             AC=7,5 cm.Vậy ta có hình sau

diện tích hình tam giác là:

     \(\frac{10\times7,5}{2}\)=37,5 cm2

chiều cao AH là

         37,5:12,5=3 cm

                  đ/s:3 cm

mk vẽ hơi xấu nên các bạn đừng chửi mk

Khách vãng lai đã xóa
0o0 cô nàng ở đâu xinh t...
Xem chi tiết
Nguyễn Hằng
Xem chi tiết
ha xuan duong
23 tháng 3 2023 lúc 21:28

.

 

ha xuan duong
23 tháng 3 2023 lúc 21:47

a,
xét tam giác BAC và tam giác BHA có
góc B chung
góc BAC=góc BHA (=90 độ)
=>tam giác BAC đông dạng với tam giác BHA
ta có \(\dfrac{AB}{BH}=\dfrac{BC}{BA}\)=>\(AB^2=BH.BC\)
b,
Xét Tam giác ABC 
=>\(\dfrac{AB}{AH}=\dfrac{BC}{AC}\)=>AB.AC=AH.BC
c,
áp dụng định lý py-ta-go vào tam giác ABC vuông tại A
\(AC^2=BC^2-BA^2\)
=>AC=8
Xét tam giác ABC 
\(\dfrac{AC}{CH}=\dfrac{AB}{BH}=>\dfrac{8}{CH}=\dfrac{6}{10-CH}\)
=>8(10-CH)=6CH
=>80-8CH=6CH
=>CH sấp sỉ 5cm
áp dụng định lý py-ta-go vào tam giác HBA vuuong tại H
\(AH^2=AB^2-BH^2\)
=>AH=3,31662479

Bùi Hải Hà
Xem chi tiết
mary
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2023 lúc 18:49

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\\BH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)

b: ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

AE/AC=AF/AB

Do đó: ΔAEF đồng dạng với ΔACB

c: Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{AB}{AD}=\dfrac{CB}{CD}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{AD}=\dfrac{CB}{CD}=\dfrac{AB+BC}{AD+CD}=\dfrac{AB+BC}{AC}\)(1)

ΔBAD vuông tại A có

\(cotABD=\dfrac{AB}{AD}\)(2)

BD là phân giác của góc ABC

=>\(\widehat{ABD}=\widehat{DBC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(cotDBC=\dfrac{AB+BC}{AC}\)

BÙI THỤC HOA
Xem chi tiết