1. Cho tam giác ABC. Biết AB=10cm, AC=24cm,BC=26cm
a) Chứng minh tam giác ABC vuông ở A
b) Tính sinB, sinC
c) Tính chiều cao AH và các đoạn mà chiều cao đó chia ra trên cạnh BC
cho tam giác abc biết ab=10cm ac=24cm bc=26cm
a)chứng minh tam giác abc vuông tại a
b)tính chiều cao ah và các đoạn mà chiều cao ah chia ra trên cạnh bc
Tham khảo:
Câu hỏi của Ngọc Nguyễn Ánh - Toán lớp 9 - Học toán với OnlineMath
Học tốt.
Bài 1: Cho tam giác ABC biết AB=10cm, AC=24cm, BC=26cm
Chứng minh: a, Tam giác ABC vuông tại A
b, Tính sinB, sinC từ đó suy ra số đo góc B, C
c, Tính chiều cao AH và các đoạn mà đường cao đó chia ra trên cạnh BC.
( Giúp mình bài 1 này trước nha, cảm ơn mngười nhiều <3)
Bài 2: Cho tam giác nhọn ABC, gọi AA', BB', CC' là các đường cao của tam giác
a, Chứng minh tam giác ABC đồng dạng với tam giác A'B'C'
b, Chứng minh rằng AB'.BC'.CA'=AB.BC.CA.cosA.cosB.cosC
c, Cho góc A =30 độ, AB=4cm,AC=8cm. Tính diện tích tam giác ABC
~ Giúp mình với, mình đang vội quá T.T
Cho tam giác ABC có AB = 10cm; AC = 24cm; BC = 26cm
a. Tính các góc của tam giác ABC
b. AH vuông góc với BC. Tính AH, HB, HC
a,theo định lý pytago đảo tính dc A=90
các góc còn lại tính bằng máy tính nha bạn.bạn lấy máy tính bấm \(sin^{-1}\)(cạnh đối/cạnh huyền) là ra góc cần tính nha bạn
b,ah vuông góc bc mà tam giác abc vuông tại a nên
\(AB^2=BH.BC\Rightarrow100=BH.26\Rightarrow BH=\dfrac{50}{13}\)
\(\Rightarrow CH=BC-BH=\dfrac{288}{13}\)
\(\Rightarrow AH^2=BH.CH=\dfrac{14400}{169}\Rightarrow AH=\dfrac{120}{13}\)
tick mik nha bn
Cho tam giác ABC vuông ở A. AB và AC là 2 cạnh góc vuông, AB = 10cm và BC = 12,5cm. tính chiều cao AH.
dựa theo định lý pitago,ta có
\(AB^2+AC^2=BC^2\)
10\(^2\)+AC\(^2\)=12,5\(^2\)
AC\(^2\)=156,25-100=56,25
AC=7,5 cm.Vậy ta có hình sau
diện tích hình tam giác là:
\(\frac{10\times7,5}{2}\)=37,5 cm2
chiều cao AH là
37,5:12,5=3 cm
đ/s:3 cm
mk vẽ hơi xấu nên các bạn đừng chửi mk
Bài 1: Cho hình thang ABCD có 2 cạnh bên AD và Bc bằng nhau, đường chéo AC vuông góc với cạnh bên BC/ Biết rằng AD= 5a. AC = 12a
a) Tính \(\frac{SinB+C\text{os}B}{SinB-CosB}\)
b) Tính chiều cao hình thăng ABCD
Bài 2: Cho tam giác ABC cân tại A, AB=AC=10cm, BC = 16cm. Trên ường cao AH lấy điểm I sao cho Ai = \(\frac{1}{3}AH\). Vẽ tia CX cắt tia BI tại D.
a) Tính các góc tam giác ABC
b) Tính diện tích tứ giác ABCD
Cho tam giác ABC vuông tại A ( AB<AC), đường cao AH.
a) Chứng minh tam giác BAC và tam giác BHA dồng dạng suy ra AB^2=BH.BC
b) Chứng minh AB.AC=AH.BC
c) cho biết AB=6cm , BC=10cm . Tính độ dài AH,CH
a,
xét tam giác BAC và tam giác BHA có
góc B chung
góc BAC=góc BHA (=90 độ)
=>tam giác BAC đông dạng với tam giác BHA
ta có \(\dfrac{AB}{BH}=\dfrac{BC}{BA}\)=>\(AB^2=BH.BC\)
b,
Xét Tam giác ABC
=>\(\dfrac{AB}{AH}=\dfrac{BC}{AC}\)=>AB.AC=AH.BC
c,
áp dụng định lý py-ta-go vào tam giác ABC vuông tại A
\(AC^2=BC^2-BA^2\)
=>AC=8
Xét tam giác ABC
\(\dfrac{AC}{CH}=\dfrac{AB}{BH}=>\dfrac{8}{CH}=\dfrac{6}{10-CH}\)
=>8(10-CH)=6CH
=>80-8CH=6CH
=>CH sấp sỉ 5cm
áp dụng định lý py-ta-go vào tam giác HBA vuuong tại H
\(AH^2=AB^2-BH^2\)
=>AH=3,31662479
cho tam giác ABC vuông tại A. Đường cao AH chia cạnh BC ra làm 2 đoạn (CH = 9 cm, BH = 4 cm)
a) chứng minh tam giác HBA đồng dạng tam giác ABC
b) Tính AH, AB
c) trên HC, lấy điểm I sao cho AH=HI. Đường thẳng qua I vuông góc với cạnh BC cắt AC ở K. Chứng minh tam giác ABK cân.
cho tam giác ABC vuông tại A có đường cao AH ( H∈BC)
a) Cho biết AB=6cm,BC=10cm. Tính AC,AH,BH
bb) Gọi E,F lần lượt là hình chiếu của điểm H lên các cạnh AB,AC. Chứng minh AE.AB=AF.AC và △AFE∼△ABC
c) Kẻ phân giác BD của góc ABC ( D∈ AC). Chứng minh : cotDBC=(AB+BC)/AC
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64\)
=>AC=8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\\BH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)
b: ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra AE*AB=AF*AC
=>AE/AC=AF/AB
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
AE/AC=AF/AB
Do đó: ΔAEF đồng dạng với ΔACB
c: Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)
=>\(\dfrac{AB}{AD}=\dfrac{CB}{CD}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AB}{AD}=\dfrac{CB}{CD}=\dfrac{AB+BC}{AD+CD}=\dfrac{AB+BC}{AC}\)(1)
ΔBAD vuông tại A có
\(cotABD=\dfrac{AB}{AD}\)(2)
BD là phân giác của góc ABC
=>\(\widehat{ABD}=\widehat{DBC}\left(3\right)\)
Từ (1),(2),(3) suy ra \(cotDBC=\dfrac{AB+BC}{AC}\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=8cm,BC =10cm
a) Chứng minh rằng tam giác ACH đồng dạng với tam giác ABC, Tính AC,AH
Qua trung điểm M của BC kẻ đường thẳng vuông góc vs BC cắt AC ở E và AB ở D Chứng minh DA.DB=DE.DM