chung minh p chia hêt cho 24 biet P = (x+y+z)^3 - (y+z-x)^3-(x+z-y)^3 - ( x+y-z)^3
Tim x, y va z, biet :
a) x/2 = y/3 = z/4 va x + y + z =18.
b) x/5 = y/-6 = z/7 va x + y - z =32.
c) x/5 = y/3 = z/2 va 2x + 3y + 4z =54.
d) x/2 = y/3 = z/6 va 3x - 2y + 2z = 24.
Ai biet thi chi giup minh nha. Cang nhanh cang tot ! Minh xin cam on.
X/2=y/2=z/4=x+y+z/9=18/9=2
X=2.2=4
Y=2.3=6
Z=2.4=8
a) x/2 = y/3 = z/4 va x + y + z =18.
Áp dụng tính chất của dãy tỉ số bằng nhau:
x/2 = y/3 = z/4 = x+y+z/2+3+4 = 18 /9 =2
=> x= 2*2 =4
y= 2* 3=6
z=2*4= 8
Vậy x=4; y=6; z=8.
b) x/5 = y/-6 = z/7 va x + y - z =32.
Áp dụng tính chất của dãy tỉ số bằng nhau:
x/5 = y/-6 =z/7 =x+y-z/ 5+(-6) -7 = 32/-8 =-4
=> x= -4 *5 = -20
y= -4* (-6)= 24
z= -4 * 7 = -28
Vậy x=-20 ; y= 24; x= -28.
c) x/5 = y/3 = z/2 va 2x + 3y + 4z =54.
x/5 = 2x/10
y/3 = 3y/9
z/2 = 4z/8
Áp dụng tính chất của dãy tỉ số bằng nhau:
2x/10 = 3y/9 = 4x/8 = 2x+3y+4z/10+9+8 = 54/27= 2
=> x= 2*5 = 10
y= 2*3 =6
x= 2*2 =4
Vậy x= 10; y=6; z=4
d) x/2 = y/3 = z/6 va 3x - 2y + 2z = 24.
x/2 =3x/6
y/3 = 2y/6
z/6 = 2z/12
Áp dụng tính chất của dãy tỉ số bằng nhau:
3x/6 = 2y/6 = 2z/12 = 3x- 2y +2z/6-6+12 = 24/12 =2
=> x= 2*2 =4
y= 2*3 =6
z= 2* 6 =12
Vậy x=4; y=6; z=12
Cho P = ( x+y+z )3 - ( y+z-x )3 - ( x+z-y )3 - ( x+y-z )3 với x,y,z là số nguyên. Chứng minh P chia hết cho 24
MONG MỌI NGƯỜI GIÚP!!!
mk ko biết bởi vì mk mới hok lp 7 thui
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
c/m vs mọi số nguyên x, y, z thì
P=(x+y+z)^3-(y+z-x)^3-(x+z-y)^3-(x+y-z)^3 chia hết cho 24
Đặt y+z-x=a
x+z-y=b
x+y-z=c
Ta thấy a+b+c=y+z-x+x+z-y+x+y-z=x+y+z
Ta có: \(P=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+c^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2-a^3-b^3-c^3\)
\(=3a^2b+3ab^2+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)
\(=3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
\(=3\cdot2z\cdot2y\cdot2x\)
\(=24xyz⋮24\)
Vậy P chia hết cho 24
Cho x,y,z là các số nguyên thoả mãn x+y+z chia hết 6
Chứng minh: (x+y)(y+z)(x+z)-2xyz chia hêt 6
Chung minh rang
(x+y+z)^3 = x^3 + y^3 + z^3 + 3(x+y)(y+z)(z+x)
12
24
36
48
60
72
84
96
208
120
132144
156
168
180
cho x,y,z nguyên và (x-y)*(y-z)*(z-x)=m. Chứng minh rằng: (x-y)^3 + (y-z)^3 + (z-x)^3 chia hết cho m
Một bài toán "lừa" người ta:
Đặt \(a=x-y,b=y-z,c=z-x\Rightarrow a+b+c=0\).
Ta có hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).
Trong trường hợp này thì \(a+b+c=0\) nên suy ra đpcm.
cho x/y=y/z/=z/t .chung minh rang:(x+y+z/y+z+t)^3=x/t
Áp dụng tính chất dãy tỉ số bằng ngau ta có :
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{x+y+z}{y+z+t}\)
\(\Rightarrow\dfrac{x.y.z}{y.z.t}=(\dfrac{x+y+z}{y+z+t})^3\)
\(\Rightarrow\dfrac{x}{t}=(\dfrac{x+y+z}{y+z+t})^3\)
\(\Rightarrowđpcm\)
cho 3 so nguyen x,y,z thoa man x+y+z=0 chung minh rang x^3+y^3+z^3= 3xyz
xét hiệu x3+y3+z3-3xyz
=(x+y)3+z3-3xy(x+y)-3xyz
=(x+y+z)3-3(x+y+z)(x+y)z-3xy(x+y+z)
=0 vì x+y+z=0
=>x3+y3+z3=3xyz
=>đpcm
cho x, y, z duong. Chung minh rang 8\(\left(x^3+y^3+z^3\right)\ge\left(x+y\right)^3+\left(y+z\right)^3+\left(z+x\right)^3\)
Với x,y,z dương, áp dụng BĐT AM-GM:
\(\left\{{}\begin{matrix}x^3+x^3+y^3\ge3x^2y\\x^3+y^3+y^3\ge3xy^2\end{matrix}\right.\) \(\Rightarrow3\left(x^3+y^3\right)\ge3\left(x^2y+xy^2\right)\)
Tương tự:\(3\left(y^3+z^3\right)\ge3\left(y^2z+yz^2\right)\);\(3\left(x^3+z^3\right)\ge3\left(x^2z+xz^2\right)\)
Cộng vế theo vế:
\(\Leftrightarrow6\left(x^3+y^3+z^3\right)\ge3\left(x^2y+xy^2\right)+3\left(y^2z+yz^2\right)+3\left(x^2z+xz^2\right)\)
\(\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge x^3+y^3+3xy\left(x+y\right)+y^3+z^3+3yz\left(y+z\right)+x^3+z^3+3xz\left(x+z\right)\) \(\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge\left(x+y\right)^3+\left(y+z\right)^3+\left(x+z\right)^3\) (đpcm)