Cho a+b+c=1
và a^2+b^2+c^2=1
và a^3+b^3+c^3=1
Tính giá trị biểu thức (a-1)^2015+(b-1)^2017+(c-1)^2019
Cho đa thức C=9+x^2y-3xy^2-5+3xy^2 A, thu gọn đa thức C B, tính giá trị của C tại x=-1và y=1
C = 9 +x2y - 3xy2 - 5 + 3xy2
C = x2y + 4
Thay x = -1 và y = 1 ta có
C = (-1)2 .1 + 4
C = 4
Với a,b,c là các số thực thỏa mãn các điều kiện a+b+c = 3 và 1/a + 1/b + 1/c = 1 3 Tính giá trị biểu thức P = ( a − 3 )^2017 . ( b − 3 )^2018 . ( c − 3 )^2019
tặng 100k cho ai giải dc bài này từ ngày 26/8/2021 -> 27/8/2021
a,1/a+1/b+1/c=1/a+b+c
⇔(a+b)(b+c)(c+a)=0
⇔a = -b
⇔ b = -c
⇔ c = -a
⇒A=(a3+b3)(b3+c3)(c3+a3)=0
b,
vi vai tro cua a,b,c la nhu nhau nen ta gia su a+b=0 vay a+b+c=0
⇒ C = 3
Thay c=3 vao bieu thuc P ta co:
P=(a - 3 )2017 . (b - 3 )2017 . (3 - 3)2017 = 0
Vay P = 0
HT~
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
cho a,b,c thỏa mãn: \(\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức : A=\(A=\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}\times b^{2018}\times c^{2019}}\)
Cho các số thực a, b, c thỏa mãn a + b + c = 3 và 1/a + 1/b + 1/c = 1/3 . Tính giá trị biểu thức P = (a − 3)^2017 .(b − 3)^2017 .(c − 3)^2017
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{3} \Leftrightarrow \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}(vì a+b+c=3)\)
\(\Leftrightarrow \dfrac{1}{a}+ \dfrac{1}{b}= \dfrac{1}{a+b+c}- \dfrac{1}{c }\)
\(\Leftrightarrow \dfrac{b+a}{ab}=\dfrac{c-a-b-c}{ac+bc+c^{2}}\)
\(\Leftrightarrow \dfrac{a+b}{ab}=\dfrac{a+b}{-ac-bc-c^2}\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ ab=-ac-bc-c^2 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ ab+ac+bc+c^2=0 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ (a+c)(b+c)=0 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ a+c=0\\ b+c=0 \end{array} \right.\)
Vì vai trò của a,b,c là như nhau nên ta giả sử a+b=0
mà a+b+c=0
\(\Rightarrow c=3\)
Thay c=3 vào biểu thức P ta có:
\(P=(a-3)^{2017}.(b-3)^{2017}.(3-3)^{2017} =0 \)
Vậy P=0
Cho 3 số a,b,c thõa mãn a/2015 = b/2016 = c/2017. Tính giá trị biểu thức B=4*(a-b)*(b-c)*(c-a)^2
tính giá trị biểu thức
[2013*2014+2014*2015]*[1:1/2:1và1/2-1và 1/3
cho a,b,c thỏa mãn a+b+c=1 và a2 + b2+c2=1 và a3+b3+c3=1 tính giá trị của biểu thức P=a2013+b2014+c2015
a,Cho ba số a, b, c thỏa mãn a+b+c =1 và a3+b3+c3=1. Tính giá trị của biểu thức : A= a2015 + b2015+c2015
b, Tìm GTNN của biểu thức B= x2-3x+2016
Giúp mình với ,please !!
a+b+c=1 <=> a+b=1-c
+) Nếu 1-c=0 => a+b=0 <=> a=-b
=> A = a2015+b2015+c2015
A = (-b)2015+b2015+c2015
A = c2015 => A = 1 (Vì 1-c=0) (1)
Ta có: a3+b3+c3=1
a3+b3=1-c3
(a+b)(a2-ab+b20=(1-c)(1+c+c2)
=> (1-c)(a2-ab+b2)=(1-c)(1+c+c2)
=> a2-ab+b2=1+c+c2
(a+b)2-3ab=(1-c)2+3c
=> -3ab=3c <=> -ab=c
Thay -ab = c vào a+b+c=1, ta có:
a+b+(-ab)=1 <=> a+b-ab-1=0 <=> a(1-b)-(1-b)=0 <=> (a-1)(1-b)=0
=> a-1=0 hoặc 1-b = 0 <=> a=1 hoặc b=1
+) Nếu a=1 => b+c=0 <=> b=-c
=> A=a2015+b2015+c2015
=> A=a2015+b2015-b2015
=> A=a2015 => A=1 (2)
+) Nếu b=1 => a+c=0 <=>a=-c
=> A=a2015+b2015+c2015
=> A=a2015+b2015+-a2015
=> A=b2015 => A=1 (3)
Từ (1)(2)(3) => A = 1
Vậy A = 1 với a+b+c=1 và a3+b3+c3=1
b) B = x2-3x+2016
B=x2-3x+2,25+2013,75
B=(x-1,5)2+2013,75
Vì (x-1,5)2 ≥ 0 => (x-1,5)2+2013,75 ≥ 2013,75
=> B ≥ 2013,75
=> GTNN của B bằng 2013,75
Dấu '=' xảy ra khi (x-1,5)2=0 <=> x-1,5=0 <=> x=1,5
Vậy GTNN của B bằng 2013,75 tại x = 1,5