tìm GTNN của các bt sau
a:x^2-4x+7
b:x^2-x+1
1.Tìm GTNN của bt
a.x^2-2x-1
b.4x^2+4x-5
2.Tìm GTLN của bt:
a.2x-x^2-4
b.-x^2-4
BÀI 1:
\(a,x^2-2x-1\)
\(=x^2-2x+1-2\)
\(=\left(x-1\right)^2-2\)
Vì: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2-2\ge-2\forall x\)
Dấu = xảy ra khi : \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy: GTNN của bt là -2 tại x=1
\(b,4x^2+4x-5\)
\(=4x^2+4x+1-6\)
\(=\left(2x+1\right)^2-6\)
Vì: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2-6\ge-6\forall x\)
Dấu = xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)
VậyGTNN của bt là -6 tại x=-1/2
BÀI 2:
\(a,2x-x^2-4\)
\(=-x^2+2x-4\)
\(=-x^2+2x-1-3\)
\(=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Vì: \(-\left(x-1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)
Dấu = xảy ra khi : \(-\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy GTLN của bt là -3 tại x=1
b,mk chưa nghĩ ra,lúc nào mk nghĩ ra sẽ gửi lời giải cho bn
1)
a) Đặt \(A=x^2-2x+1\)
\(\Rightarrow A=x^2-2x-1=\left(x^2-2.x.1+1^2\right)-2=\left(x-1\right)^2-2\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2-2\ge2\forall x\)
\(A=2\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy \(A_{min}=2\Leftrightarrow x=1\)
Câu b tương tự
2)
a) Đặt \(B=2x-x^2-4\)
\(B=2x-x^2-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)
\(B=-3\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy\(B_{max}=-3\Leftrightarrow x=1\)
b) Đặt \(C=-x^2-4\)
Ta có: \(x^2\ge0\forall x\Rightarrow-x^2\ge0\forall x\Rightarrow-x^2-4\le-4\forall x\)
\(C=-4\Leftrightarrow-x^2=0\Leftrightarrow x=0\)
Vậy \(C_{max}=-4\Leftrightarrow x=0\)
thôi bn tham khảo bài của bn kudo shinichi đi, bn ấy lm đúng rồi
tìm GTLN hoặc GTNN của bt (x^2-4x+1)/x^2
1) Tìm GTNN của bt sau : a) M = x^2 + 4x + 9 b) N = x^2 - 20x + 101 2) Tìm GTLN của bt sau : a) C = -y^2 + 6y - 15 B = -x^2 + 9x -12
1)
a) \(M=\)\(x^2\)\(+\)\(4x\)\(+\)\(9\)
\(=\)\(x^2\)\(+\)\(2x\)\(.\)\(2\)\(+\)\(4\)\(+\)\(5\)
\(=\left(x+2\right)^2\)\(+\)\(5\)\(>;=\)\(5\)
Dấu bằng xảy ra khi x + 2 = 0
x = -2
Vậy GTNN của M bằng 5 khi x = -2
b) \(N=\)\(x^2\)\(-\)\(20x\)\(+\)\(101\)
\(=\)\(x^2\)\(-\)\(2x\)\(.\)\(10\)\(+\)\(100\)\(+\)\(1\)
\(=\)\(\left(x-10\right)^2\)\(+\)\(1\)\(>;=\)\(1\)
Dấu bằng xảy ra khi x - 10 = 0
x = 10
Vậy GTNN của N bằng 1 khi x = 10
2)
a) \(C=\)\(-y^2\)\(+\)\(6y\)\(-\)\(15\)
\(=\)\(-y^2\)\(+\)\(2y\)\(.\)\(3\)\(-\)\(9\)\(-\)\(6\)
\(=\)\(-\left(y-3\right)^2\)\(-\)\(6\)\(< ;=\)\(6\)
Dấu bằng xảy ra khi y - 3 = 0
y = 3
Vậy GTLN của C bằng -6 khi y = 3
b) \(B=\)\(-x^2\)\(+\)\(9x\)\(-\)\(12\)
\(=\)\(-x^2\)\(+\)\(2x\)\(.\)\(\frac{9}{2}\)\(-\)\(\frac{81}{4}\)\(+\)\(\frac{81}{4}\)\(-\)\(12\)
\(=\)\(-\left(x-\frac{9}{2}\right)^2\)\(+\)\(\frac{33}{4}\)\(< ;=\)\(\frac{33}{4}\)
Dấu bằng xảy ra khi \(x-\frac{9}{2}=0\)
\(x=\frac{9}{2}\)
Vậy GTLN của B bằng \(\frac{33}{4}\)khi x = \(\frac{9}{2}\)
a) M = x2 + 4x + 9 = x2 + 4x + 4 + 5 = (x + 2)2 + 5
Vì : \(\left(x+2\right)^2\ge0\forall x\in R\)
Nên M = (x + 2)2 + 5 \(\ge5\forall x\in R\)
Vậy Mmin = 5 khi x = -2
b) N = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1
Vì \(\left(x-10\right)^2\ge0\forall x\in R\)
Nên : N = (x - 10)2 + 1 \(\ge1\forall x\in R\)
Vậy Nmin = 1 khi x = 10
Bài 2 :
a) C = -y2 + 6y - 15 = -(y2 - 6y + 15) = -(y2 - 6y + 9 + 6) = -(y2 - 6y + 9) - 6 = -(y - 3)2 - 6
Vì \(-\left(y-3\right)^2\le0\forall x\in R\)
Nên : C = -(y - 3)2 - 6 \(\le-6\forall x\in R\)
Vậy Cmin = -6 khi y = 3
b) B = -x2 + 9x - 12 = -(x2 - 9x + 12) = -(x2 - 9x + \(\frac{81}{4}-\frac{33}{4}\)) = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\)
Vì \(-\left(x-\frac{9}{2}\right)^2\le0\forall x\in R\)
Nên : B = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\) \(\le\frac{33}{4}\forall x\in R\)
Vậy Bmin = \(\frac{33}{4}\) khi \(x=\frac{9}{2}\)
Tìm GTNN của các bt sau
C=(2x+5)(5x+14) tất cả trên 2 với x >0
D=(x2/1+4x)
E=x2-2X+1994 tất cả trên x2 với x khác 0
Tìm GTNN,GTLN của
P=4x+3 tất cả trên x2+1
a) A = (2x + 1)/(x² + 2)
Tìm min
ta có: A = (2x + 1)/(x² + 2)
=> 2A = (4x + 2)/(x² + 2)
= (4x + 2 + x² - x² + 2 - 2)/(x² + 2)
= [ (x² + 4x + 4) + (-x² - 2) ]/(x² + 2)
= [ (x + 2)² - (x² + 2) ]/(x² + 2)
= (x + 2)²/(x² + 2) - (x² + 2)/(x² + 2)
= (x + 2)²/(x² + 2) - 1
Ta có: (x + 2)² ≥ 0 và (x² + 2) > 0
=> (x + 2)²/(x² + 2) ≥ 0
=> (x + 2)²/(x² + 2) - 1 ≥ -1
=> 2A ≥ -1
=> A ≥ -1/2
Dấu bằng xảy ra <=> (x + 2)²/(x² + 2) = 0
<=> (x + 2)² = 0
<=> x + 2 = 0
<=> x = -2
Tìm max: A = (2x + 1)/(x² + 2)
= (2x + 2 - 1 + x² - x²)/(x² + 2)
= [ (x² + 2) + (-x² + 2x - 1) ]/(x² + 2)
= [ (x² + 2) - (x² - 2x + 1) ]/(x² + 2)
= [ (x² + 2) - (x - 1)² ]/(x² + 2)
= (x² + 2)/(x² + 2) - (x - 1)²/(x² + 2)
= 1 - (x - 1)²/(x² + 2)
Do (x - 1)² ≥ 0 và (x² + 2) > 0
=> (x - 1)²/(x² + 2) ≥ 0
=> -(x - 1)²/(x² + 2) ≤ 0
=> 1 - (x - 1)²/(x² + 2) ≤ 1
=> A ≤ 1.
Dấu bằng xảy ra <=> -(x - 1)²/(x² + 2) = 0
<=> -(x - 1)² = 0
<=> (x - 1)² = 0
<=> x - 1 = 0
<=> x = 1.
b) Tìm min: B = (8x + 3)/(4x² + 1)
= (8x + 4 - 1 + 4x² - 4x²)/(4x² + 1)
= [ (4x² + 8x + 4) + (-4x² - 1) ]/(4x² + 1)
= [ (4x² + 8x + 4) - (4x² + 1) ]/(4x² + 1)
= [ (2x + 2)² - (4x² + 1) ]/(4x² + 1)
= (2x + 2)²/(4x² + 1) - (4x² + 1)/(4x² + 1)
= (2x + 2)²/(4x² + 1) - 1
Do (2x + 2)² ≥ 0 và 4x² + 1 > 0
=> (2x + 2)²/(4x² + 1) ≥ 0
=> (2x + 2)²/(4x² + 1) - 1 ≥ -1
=> B ≥ -1
Dấu bằng xảy ra <=> (2x + 2)²/(4x² + 1) = 0
<=> (2x + 2)² = 0
<=> 2x + 2 = 0
<=> 2x = -2
<=> x = -1.
Tìm max: B = (8x + 3)/(4x² + 1)
= (8x + 4 - 1 + 16x² - 16x²)/(4x² + 1)
= [ (16x² + 4) + (-16x² + 8x - 1) ]/(4x² + 1)
= [ 4(4x² + 1) - (16x² - 8x + 1) ]/(4x² + 1)
= [ 4(4x² + 1) - (4x - 1)² ]/(4x² + 1)
= 4(4x² + 1)/(4x² + 1) - (4x - 1)²/(4x² + 1)
= 4 - (4x - 1)²/(4x² + 1)
Đến đây lập luận tương tự để chỉ ra maxB = 4 <=> x = 1/4
c) tìm min: C = 2(x² + x + 1)/(x² + 1)
= (2x² + 2x + 2)/(x² + 1)
= [ (x² + 1) + (x² + 2x + 1) ]/(x² + 1)
= [ (x² + 1) + (x + 1)² ]/(x² + 1)
= (x² + 1)/(x² + 1) + (x + 1)²/(x² + 1)
Lập luận tương tự để tìm ra min C = 1 <=> x = -1
tìm max: C = 2(x² + x + 1)/(x² + 1)
= (2x² + 2x + 2)/(x² + 1)
= (3x² - x² + 2x + 3 - 1)/(x² + 1)
= [ (3x² + 3) + (-x² + 2x - 1) ]/(x² + 1)
= [ 3(x² + 1) - (x² - 2x + 1) ]/(x² + 1)
= [ 3(x² + 1) - (x - 1)² ]/(x² + 1)
= 3(x² + 1)/(x² + 1) - (x - 1)²/(x² + 1)
Lập luận tương tự như trên để tìm ra max C = 3 <=> x = 1
Tìm gtln và gtnn của bt: 4x-8/x^2-4x+8
TÌM GTNN CỦA CÁC BT SAU ;
a, B= (x-3)^2 + (x-5)^2
b, C=(2x-1)^2 - 3l2x-1l +2
c, D=(4x+1).(4+x) / x với x>0
Tìm GTNN của các bt sau...
a, P = 4x(x-1)+11
b,Q = 2x2-4x-2xy+y2+13
giải giúp mik nhé!
Ta có : P = 4x(x - 1) + 11
= 4x2 - 4x + 11
= (2x)2 - 4x + 1 + 10
= (2x - 1)2 + 10
Mà (2x - 1)2 \(\ge0\forall x\)
Nên (2x - 1)2 + 10 \(\ge10\forall x\)
Vậy GTNN của biểu thức là 10 khi và chỉ khi x = \(\frac{1}{2}\)
Tìm GTNN của bt sau : a) M = x^2 + 4x + 9 b) N = x^2 - 20x + 101 2) Tìm GTLN của bt sau : a) C = -y^2 + 6y - 15 B = -x^2 + 9x -12
Bài 1:
a. $M=x^2+4x+9=(x^2+4x+4)+5=(x+2)^2+5\geq 0+5=5$ do $(x+2)^2\geq 0$ với mọi $x$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+2=0\Leftrightarrow x=-2$
b.
$N=x^2-20x+101=(x^2-20x+10^2)+1=(x-10)^2+1\geq 1$ do $(x-10)^2\geq 0$ với mọi $x$
Vậy $N_{\min}=1$. Giá trị này đạt tại $x-10=0\Leftrightarrow x=10$
Bài 2:
a.
$C=-y^2+6y-15$
$-C=y^2-6y+15=(y^2-6y+9)+6=(y-3)^2+6\geq 6$ (do $(y-3)^2\geq 0$ với mọi $y$)
$\Rightarrow C\leq -6$
Vậy $C_{\max}=-6$. Giá trị này đạt tại $y-3=0\Leftrightarrow y=3$
b.
$-B=x^2-9x+12=(x^2-9x+4,5^2)-8,25=(x-4,5)^2-8,25\geq -8,25$ do $(x-4,5)^2\geq 0$ với mọi $x$
$\Rightarrow B\leq 8,25$
Vậy $B_{\max}=8,25$. Giá trị này đạt tại $x-4,5=0\Leftrightarrow x=4,5$
tìm GTNN của BT sau
1) x^2+4x-2
2) x^2+7x+1
3) 25x^2+30x+11
\(1,x^2+4x-2=\left(x+2\right)^2-6\ge6\)
Dấu \("="\Leftrightarrow x=-2\)
\(2.x^2+7x+1=\left(x+\dfrac{7}{2}\right)^2-\dfrac{45}{4}\ge-\dfrac{45}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{7}{2}\)
\(3,25x^2+30x+11=\left(5x+3\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{5}\)