PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:
\(a,x^7+x^2+1\)
\(b,x^8+x+1\)
\(c,x^5+x^4+1\)
\(d,x^8+x^4+1\)
a) x12 + 4 = x12 + 4x6 + 4 - 4x6 = (x6 + 2)2 - (2x3)2
= (x6 - 2x3 + 2)(x6 + 2x3 + 2)
b) 4x8 + 1 = 4x8 + 4x4 + 1 - 4x4 = (2x4 + 1)2 - (2x2)2
= (2x4 + 2x2 + 1)(2x4 - 2x2 + 1)
c) x7 + x5 - 1 = x7 - x + x5 + x2 - (x2 - x + 1) = x(x6 - 1) + x2(x3 + 1) - (x2 - x + 1)
= x(x3 - 1)(x3 + 1) + x2(x + 1)(x2 - x + 1) - (x2 - x + 1)
= (x4 - x)(x + 1)(x2 - x + 1) + (x3 + x2)(x2 - x + 1) - (x2 - x + 1)
= (x5 + x4 - x2 - x + x3 + x2 - 1)(x2 -x + 1)
= (x5 + x4 + x3 - x - 1)(x2 - x + 1)
d) x7 + x5 + 1 = x7 - x + x5 - x2 + (x2 + x + 1)
= x(x3 - 1)((x3 + 1) + x2(x3 - 1) + (x2 + x + 1)
= (x4 + x)(x - 1)(x2 + x + 1) + x2(x - 1)((x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x5 - x4 + x2 - x + x3 - x2 + 1)
= (x2 + x + 1)(x5 - x4 + x3 - x + 1)
phân tích đa thức thành nhân tử
a) x^5 +x^4 +1
b) X^8 + X+1
c) x^8 + x^7+1
d) x^8 + x^4 + z
Cho em xin luôn dạng tổng quát nha
1) phân tích đa thức thành nhân tử
a) 4x^4 - 32x^2 + 1
b) x^6 + 27
c) 3(x^4 + x^2 + 1) - (x^2 - x + 1)
d) (2x^2 -4)^2 + 9
2) phân tích đa thức thành nhân tử
a) 4x^4 + 1
b) 64x^4 + y^4
c) x^8 + x^4 + 1
Phân tích đa thức thành nhân tử:
a, x8+x7+1
b, x5-x4-1
c, x7+x5+1
d, x8+x4+1
\(x^8+x^7+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)+\left(x^7-x^5+x^4-x^2+x\right)+\left(x^6-x^4+x^3-x+1\right)\)
\(=x^2\left(x^6-x^4+x^3-x+1\right)+x\left(x^6-x^4+x^3-x+1\right)+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
\(x^5-x^4-1\)
\(=x^5-x^3-x^2-x^4+x^2+x+x^3-x-1\)
\(=x^2\left(x^3-x-1\right)-x\left(x^3-x-1\right)+\left(x^3-x-1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
\(x^7+x^5+1\)
\(=x^7-x^6+x^5-x^3+x^2+x^6-x^5+x^4-x^2+x+x^5-x^4+x^3-x+1\)
\(=x^2\left(x^5-x^4+x^3-x+1\right)+x\left(x^5-x^4+x^3-x+1\right)+\left(x^5-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
Phân tích đa thức thành nhân tử :
a, x8+x7+1
b, x5-x4-1
c, x7+x5+1
d, x8+x4+1
a, x8 + x7 + 1
=x2 (x6 - 1) + x (x6 - 1) +(x2 + x + 1)
= (x6 _ 1)(x2 + x) + (x2 + x +1)
= (x3 - 1)(x3 + 1)( x2 + x) + (x2 + x +1)
=(x - 1)(x2 + x +1)( x2 + x) + (x2 + x +1)
=(x2 + x +1)((x - 1)( x2 + x) +1)
=(x2 + x +1)(x3 + 1)
b, x5 - x4-1
c, x7+x5 + 1
d,x8 + x4 +1
Chú ý: Các đa thức có dạng: x3m+1+x3n+2+1 như x7+x2+1; x7+x5+1; x8 + x4 +1;
x5+x+1; x8+x+1 đều có nhân tử chung là x2 + x +1
Các phần còn lại tương tự nhé!!!
Phân tích đa thức thành nhân tử
a)x^5-x^4-1
b)x^8+x^7+1
a) \(x^5-x^4-1\)
\(=\left(x^5+x^2\right)-\left(x^4+x\right)-\left(x^2-x+1\right)\)
\(=x^2\left(x^3+1\right)-x\left(x^3+1\right)-\left(x^2-x+1\right)\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-x^2-x-1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
b) \(x^8+x^7+1\)
\(=\left(x^8-x^2\right)+\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^6-1\right)+x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)\left(x^3+1\right)+x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[\left(x^3-x^2\right)\left(x^3+1\right)+\left(x^2-x\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[\left(x^3-x\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
a) \(x^5-x^4-1=x^5+x^2-x^4-x^2-1\)
\(=x^2\left(x^3+1\right)-\left(x^4+x^2+1\right)=x^2\left(x+1\right)\left(x^2-x+1\right)-\left[\left(x^2\right)^2+2x^2+1-x^2\right]\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-\left[\left(x^2+1\right)-x^2\right]\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(=\left(x^2-x+1\right)\left[x^2\left(x+1\right)-\left(x^2+x+1\right)\right]\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-x^2-x-1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
b) \(x^8+x^7+1=x^8+x^7+x^6-x^6+1\)
\(=x^6\left(x^2+x+1\right)-\left(x^6-1\right)=x^6\left(x^2+x+1\right)-\left[\left(x^3\right)^2-1\right]\)
\(=x^6\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)=x^6\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)
\(=\left(x^2+x+1\right)\left[x^6-\left(x-1\right)\left(x^3+1\right)\right]=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
Mong cô Chuy cho e thêm 1 Gp nựa nha cô '-'
Giup mk nhé
Phân tích đa thức sau thành nhân tử
a) x^4+16
b)64x^4+y^4
c)x^5-x^4-1
d)x^8+x^7+1
a/ \(x^4+16\)
\(=x^4+4x^2+16-4x^2\)
\(=\left(x^4+4x^2+16\right)-4x^2\)
\(=\left(x^2+4\right)^2-\left(2x\right)^2\)
\(=\left(x^2+4-2x\right)\left(x^2+4+2x\right)\)
b/ \(64x^4+y^4\)
\(=64x^4+y^4+16x^2y^2-16x^2y^2\)
\(=\left(64x^4+y^4+16x^2y^2\right)-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(y^2+8x^2-4xy\right)\left(8x^2+y^2-4xy\right)\)
Phân tích đa thức thành nhân tử :
a) C = ( x^2 - 2x + 3 )( x^2 - 2x + 5 ) - 8
b) D = x^8 + x^7 + 1
ủa phần a mình phân tích rồi mà bạn hu hu
Phân tích đa thức thành nhân tử:
a) 25 y 2 + 10 y 8 +1;
b) ( x - 1 ) 4 - 2 ( x 2 - 2 x + 1 ) 2 +1;
c) (x + 1)(x + 2)(x + 3)(x + 4) - 24;
d) ( x 2 + 4 x + 8 ) 2 + 3 x ( x 2 + 4x + 8) + 2 x 2 ;
e) x 4 + 6 x 3 +7 x 2 -6x + 1.
Bài 1 : Phân tích đa thức thành nhân tử
a ) x^8 + x^7 + 1
b ) x^5 + x + 1
c ) x^8 + x^4 + 1
d ) x^3 + x^2 +4
e ) x^4 + 2x^2 - 24
f ) x^3 - 2x - 4
Bài 2 : Phân tích đa thức thành nhân tử
a ) ( x^ + x )^2 -14(x^2 + x ) - 24
b ) ( x^2 + x )^2 + 4x^2 + 4x - 12
c ) x^4 + 2x^3 + 5x^2 + 4x - 12
d ) ( x+ 1 ) ( x+ 2 ) ( x+ 3 ) ( x + 4 ) +1
MỌI NGƯỜI GIẢI CHI TIẾT VÀ ĐÚNG THÌ EM SẼ TICK NHAA ... GIÚP EM VỚI EM ĐG CẦN GẤP Ạ !
\(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)
\(+\left(x^7-x^5+x^4-x^2+x\right)\)
\(+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
\(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(x^4+2x^2-24\)
\(=x^4+2x^2+1-25\)
\(=\left(x^2+1\right)^2-5^2\)
\(=\left(x^2+6\right)\left(x^2-4\right)\)
\(=\left(x^2+6\right)\left(x+2\right)\left(x-2\right)\)