Rút gọn:
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
Rút gọn phân số sau:
\(M=\frac{\text{2 . 6 . 10 + 4 . 12 . 20 + 6 . 18 . 30 + ..... + 20 . 60 . 100 }}{\text{1 . 2 . 3 + 2 . 4 . 6 + 3 . 6 . 9 + ..... + 10 . 20 . 30}}\)
\(M=\frac{2.6.10+4.12.20+6.18.30+...+20.60.100}{1.2.3+2.4.6+3.6.9+...+10.20.30}\)
\(=\frac{2.6.10.\left(1+2+3+...+10\right)}{1.2.3.\left(1+2+3+...+10\right)}\)
\(=20\)
Rút Gọn :\frac{4^5\cdot 9^4-2\cdot 6^9}{2^{10}\cdot 3^8+6^8\cdot 20}
\(\frac{4^{20}-2^{20}-6^{20}}{6^{20}-3^{20}+9^{20}}\)
\(\frac{4^{20}-2^{20}-6^{20}}{6^{20}-3^{20}-9^{20}}=\frac{2^{20}.2^{20}-2^{20}-2^{20}.3^{20}}{3^{20}.2^{20}-3^{20}-3^{20}.3^{20}}\)
\(=\frac{2^{20}\left(2^{20}-1-3^{20}\right)}{3^{20}\left(2^{20}-1-3^{20}\right)}=\frac{2^{20}}{3^{20}}\)
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)=\(\frac{2^{40}-2^{20}+2^{20}.3^{20}}{3^{20}.2^{20}-3^{20}+3^{40}}\)=\(\frac{2^{20}.\left(2^{20}-1+3^{20}\right)}{3^{20}.\left(2^{20}-1+3^{20}\right)}\)=\(\frac{2^{20}}{3^{20}}\)
Nhớ k nhá
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}=\frac{\left(2^2\right)^{20}-2^{20}+\left(3.2\right)^{20}}{\left(3.2\right)^{20}-3^{20}+\left(3^2\right)^{20}}=\frac{2^{20}.2^{20}-2^{20}.1+3^{20}.2^{20}}{3^{20}.2^{20}-3^{20}.1+3^{20}.3^{20}}=\frac{2^{20}.\left(2^{20}-1+3^{20}\right)}{3^{20}.\left(2^{20}-1+3^{20}\right)}=\frac{2^{20}}{3^{20}}=\left(\frac{2}{3}\right)^{20}=\frac{40}{60}=\frac{2}{3}\)
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
tính:
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
Tính;\(\frac{4^{20}-2^{20}+6^{20}}{^{ }6^{20}-3^{20}+9^{20}}\)
Tính:
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
\(=\frac{\left(2.2\right)^{20}-2^{20}+\left(2.3\right)^{20}}{\left(3.2\right)^{20}-3^{20}+\left(3.3\right)^{20}}\)
\(=\frac{2^{20}.2^{20}-2^{20}+2^{20}.3^{20}}{3^{20}.2^{20}-3^{20}+3^{20}.3^{20}}\)
\(=\frac{2^{20}.2^{20}-2^{20}.1+2^{20}.3^{20}}{3^{20}.2^{20}-3^{20}.1+3^{20}.3^{20}}\)
\(=\frac{2^{20}.\left(2^{20}-1+3^{20}\right)}{3^{20}.\left(2^{20}-1+3^{20}\right)}\)
\(=\frac{2^{20}}{3^{20}}\)
\(=\left(\frac{2}{3}\right)^{20}.\)
Chúc bạn học tốt!
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)=?