So sánh hai số x và y trong mỗi trường hợp sau:
a) x + 5 > y + 5;
b) – 11x \( \le \) - 11y;
c) 3x – 5 < 3y – 5;
d) – 7x + 1 > - 7y + 1.
So sánh giá trị trị tuyệt đối của hai số thực x,y trong mỗi trường hợp sau
a)x=\(\dfrac{15}{7}\); y=\(\dfrac{-1}{8}\)
b)x=-7,4; y=-6,7
So sánh hai số a và b trong mỗi trường hợp sau:
a) a, b là hai số dương và |a| < |b|;
b) a, b là hai số âm và |a| < |b|
a) Khi a, b là hai số dương:
|a| = a; |b| = b
Khi đó, |a| < |b| , tức là a < b
Vậy a < b
b) Khi a, b là hai số âm:
|a| = - a; |b| = - b
Khi đó, |a| < |b| , tức là - a < - b hay a > b
Vậy a > b
a: |a|<|b|
mà a,b dương
nên a<b
b: a,b là hai số âm
|a|<|b|
Do đó: a>b
Cácha)An và Tú mỗi em viết một số tự nhiên vào bảng con rồi đem ra so sánh. Hỏi có thể xảy ra trong các trường hợp nào?
b)Gọi x là số của An viết,y Là số của Bình viết (x, y € N).Hỏi khi so sánh x và y Có thể xảy ra trong các trường hợp nào?
a) Có thể xảy ra 3 trường hợp :
- Tường hợp 1 : Hai số tự nhiên có thể bằng nhau
-Trường hợp 2 : Số tự nhiên của An có thể lớn hơn
-Trường hợp 3 : Số tự nhiên của Bình có thể lớn hơn
b) Giống như phần a)
# Chúc bạn hok tốt #
1 ) so sánh : A= 3450 và B= 5300
2) tìm các số tự nhiên x ,y trong mỗi trường hợp sau đây
Lộn, lộn,
\(3^{450}=\left(3^3\right)^{150}=27^{150}\)
Vì \(27^{150}>25^{150}\)nên \(A>B\)
1) Ta có: \(3^{450}=\left(3^3\right)^{150}=9^{150}\).
\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
Ví \(9^{150}< 25^{150}\)nên \(3^{450}< 5^{300}\)
\(\Rightarrow A< B\)
So sánh x và y trong mỗi trường hợp sau:
a) x − 2 3 ≤ y − 2 3 ; b) − 3 − x > − y − 3
Tìm số đo của góc giữa hai đường thẳng \({d_1}\) và \({d_2}\) trong các trường hợp sau:
a) \({d_1}:x - 2y + 3 = 0\) và \({d_2}:3x - y - 11 = 0\)
b) \({d_1}:\left\{ \begin{array}{l}x = t\\y = 3 + 5t\end{array} \right.\) và \({d_2}:x + 5y - 5 = 0\)
c) \({d_1}:\left\{ \begin{array}{l}x = 3 + 2t\\y = 7 + 4t\end{array} \right.\) và \({d_2}:\left\{ \begin{array}{l}x = t\\y = - 9 + 2t\end{array} \right.\)
a) Ta có vectơ pháp tuyến của hai đường thẳng \({d_1}\)và \({d_2}\) lần lượt là \(\overrightarrow {{n_1}} = \left( {1; - 2} \right),\overrightarrow {{n_2}} = \left( {3; - 1} \right)\)
Ta có \(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.3 + \left( { - 2} \right).( - 1)} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} \sqrt {{3^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {{d_1},{d_2}} \right) = 45^\circ \)
b) Ta có vectơ pháp tuyến của hai đường thẳng \({d_1}\) và \({d_2}\) lần lượt là \(\overrightarrow {{n_1}} = \left( {5; - 1} \right),\overrightarrow {{n_2}} = \left( {1;5} \right)\)
Ta có \({a_1}{a_2} + {b_1}{b_2} = 5.1 + ( - 1).5 = 0\)
Suy ra \(\left( {{d_1},{d_2}} \right) = 90^\circ \)
c) Ta có vectơ chỉ phương của hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) lần lượt là \(\overrightarrow {{u_1}} = \left( {2; 4} \right),\overrightarrow {{u_2}} = \left( {1;2} \right)\)
\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {2.1+4.2} \right|}}{{\sqrt {{2^2} + {{ { 4} }^2}} \sqrt {{1^2} + {{{ 2}}^2}} }} = 1 \Rightarrow \left( {{d_1},{d_2}} \right) = 0^\circ \)
Tìm tọa độ giao điểm và góc giữa hai đường thẳng \({d_1}\) và \({d_2}\) trong mỗi trường hợp sau:
a) \({d_1}:x - y + 2 = 0\) và \({d_2}:x + y + 4 = 0\)
b) \({d_1}:\left\{ \begin{array}{l}x = 1 + t\\y = 3 + 2t\end{array} \right.\) và \({d_2}:x - 3y + 2 = 0\)
c) \({d_1}:\left\{ \begin{array}{l}x = 2 - t\\y = 5 + 3t\end{array} \right.\) và \({d_2}:\left\{ \begin{array}{l}x = 1 + 3t'\\y = 3 + t'\end{array} \right.\)
a) Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:
\(\left\{ \begin{array}{l}x - y + 2 = 0\\x + y + 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 3\\y = - 1\end{array} \right.\)
\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.1 + ( - 1).1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {1^2}} }} = 0 \Rightarrow {d_1} \bot {d_2}\)
Vậy hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc với nhau tại điểm có tọa độ \(( - 3; - 1)\)
b) Đường thẳng \({d_1}\) có phương trình tổng quát là: \({d_1}:2x - y + 1 = 0\)
Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:
\(\left\{ \begin{array}{l}2x - y + 1 = 0\\x - 3y + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{1}{5}\\y = \frac{3}{5}\end{array} \right.\)
\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {2.\left( { - 1} \right) + 1.( - 3)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {{d_1},{d_2}} \right) = 45^\circ \)
Vậy hai đường thẳng \({d_1}\) và \({d_2}\) cắt nhau tại điểm có tọa độ \(\left( { - \frac{1}{5};\frac{3}{5}} \right)\) và góc giữa chúng là \(45^\circ \)
c) Đường thẳng \({d_1}\) và \({d_2}\) lần lượt có phương trình tổng quát là:
\({d_1}:3x + y - 11 = 0,{d_2}:x - 3y + 8 = 0\)
Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:
\(\left\{ \begin{array}{l}3x + y - 11 = 0\\x - 3y + 8 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{5}{2}\\y = \frac{7}{2}\end{array} \right.\)
\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {3.1 + 1.( - 3)} \right|}}{{\sqrt {{3^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = 0 \Rightarrow \left( {{d_1},{d_2}} \right) = 90^\circ \)
Vậy hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc tại điểm có tọa độ \(\left( {\frac{5}{2};\frac{7}{2}} \right)\)
Xác định parabol \(y = a{x^2} + bx + 4\) trong mỗi trường hợp sau:
a) Đi qua điểm \(M\left( {1;12} \right)\) và \(N\left( { - 3;4} \right)\)
b) Có đỉnh là \(I\left( { - 3; - 5} \right)\)
a) Thay tọa độ điểm \(M\left( {1;12} \right)\) và \(N\left( { - 3;4} \right)\) ta được:
\(\begin{array}{l}\left\{ \begin{array}{l}a{.1^2} + b.1 + 4 = 12\\a.{\left( { - 3} \right)^2} + b.\left( { - 3} \right) + 4 = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a + b = 8\\9a - 3b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 6\end{array} \right.\end{array}\)
Vậy parabol là \(y = 2{x^2} + 6x + 4\)
b) Hoành độ đỉnh của parabol là \(x_I = \frac{{ - b}}{{2a}}\)
Suy ra \(x_I = \frac{{ - b}}{{2a}} = - 3 \Leftrightarrow b = 6a\) (1)
Thay tọa độ điểm I vào ta được:
\(\begin{array}{l} - 5 = a.{\left( { - 3} \right)^2} + b.\left( { - 3} \right) + 4\\ \Leftrightarrow 9a - 3b = - 9\\ \Leftrightarrow 3a - b = - 3\left( 2 \right)\end{array}\)
Từ (1) và (2) ta được hệ
\(\begin{array}{l}\left\{ \begin{array}{l}b = 6a\\3a - b = - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6a\\3a - 6a = - 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = 6a\\a = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6\\a = 1\end{array} \right.\end{array}\)
Vậy parabol là \(y = {x^2} + 6x + 4\).
Tìm tâm và bán kính của đường tròn trong môi trường hợp sau:
a) Đường tròn có phương trình\({(x + 1)^2} + {(y - 5)^2} = 9\) ;
b) Đường tròn có phương trình\({x^2} + {y^2}-6x - 2y-{\rm{1}}5 = 0\) .
a) Đường tròn \({(x + 1)^2} + {(y - 5)^2} = 9\) có tâm \(I\left( { - 1;5} \right)\) và \(R = 3\)
b) Đường tròn \({x^2} + {y^2}-6x - 2y-{\rm{1}}5 = 0\) có tâm \(I\left( {3;1} \right)\) và \(R = \sqrt {{3^2} + {1^2} + 15} = 5\)
Bài 1: Cho hàm số y=\(-\)ax+5. Hãy xác định hệ số a biết rằng:
a, Đồ thị hàm số song song với đường thẳng y=3x
b, Khi x=1+\(\sqrt{3}\) thì y=\(4-\sqrt{3}\)
Bài 2: Cho hàm số y=3x+b. Hãy xác định hệ số b trong mỗi trường hợp sau:
a, Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng \(-3\)
b, Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng \(-4\)
c, Đồ thị hàm số đi qua điểm M(\(-1;2\))
Mong mọi người giúp đỡ vì mình cần gấp ạ
2:
a: Thay x=0 và y=-3 vào (d), ta được:
3*0+b=-3
=>b=-3
b: Thay x=-4 và y=0 vào (d), ta được:
3*(-4)+b=0
=>b=12
c: Thay x=-1 và y=2 vào (d), ta được:
3*(-1)+b=2
=>b-3=2
=>b=5