Giải phương trình:
\(\sqrt[3]{7x+1}-\sqrt[3]{x^2-x-8}+\sqrt[3]{x^2-8x-1}=2\)
P/s: Cần gấp
Giải phương trình:
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)
Mn ơi giúp mk nha, mk đang cần gấp lắm...
TA CÓ:
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)
\(\Leftrightarrow\sqrt{x-1}-2+\sqrt{x-1}-3=5\Leftrightarrow2\sqrt{x-1}=10\Leftrightarrow\sqrt{x-1}=5\)
\(\Leftrightarrow x-1=25\Leftrightarrow x=26\)
ĐKXĐ: \(x\ge1\)
PT (=) \(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\)
(=) \(\sqrt{x-1}-2+\sqrt{x-1}+3=5\) (=) \(2\sqrt{x-1}=4\)(=) \(\sqrt{x-1}=2\)(=) X = 5 (nhận)
Giải phương trình \(2-2\sqrt{x}=\frac{-1}{\sqrt{81-7x^3}}\left(x^3+18\sqrt{x}-x^3\sqrt{x}\right)-18\)
Giải phương trình:
\(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=3-9x\)
Mình cần gấp, mong mọi người giúp mình với ạ. Cả mạng sống mình thu bé lại bàng một bài toán T_T.
Giải ra từng bước kĩ kĩ tí nha m.n. Cảm ơn nhiều.
giải các phương trình sau:
a. \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\)
b. \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c. \(\sqrt{\dfrac{3x-2}{x+1}}=3\)
Lời giải:
a. ĐKXĐ: $x\geq 0$
$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$
$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$
$\Leftrightarrow 13\sqrt{2x}=28$
$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$
$\Leftrightarrow 2x=\frac{784}{169}$
$\Leftrightarrow x=\frac{392}{169}$
b. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$
PT $\Leftrightarrow \frac{3x-2}{x+1}=9$
$\Rightarrow 3x-2=9(x+1)$
$\Leftrightarrow x=\frac{-11}{6}$ (tm)
Giải phương trình :
\(\left(\sqrt{x+5}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
Giải phương trình sau:
a, \(\sqrt{x^2-x+3}+7=10\)
b, \(\sqrt{x^2-4x+8}-7=-5\)
c, \(\sqrt{x-2}=x+1\)
d, \(\sqrt{1+x^2}-3=x\)
a: Ta có: \(\sqrt{x^2-x+3}+7=10\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b: Ta có: \(\sqrt{x^2-4x+8}-7=-5\)
\(\Leftrightarrow x^2-4x+8=4\)
\(\Leftrightarrow x-2=0\)
hay x=2
Rút gọn: \(A=\frac{\sqrt{1+\sqrt{1-x^2}}.\left[\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\right]}{2+\sqrt{1-x^2}}\)
Giải giúp mk... Mk cần gấp.
Giải phương trình: \(\hept{\begin{cases}\frac{x^3+x^2+x}{x+1}=\left(y+3\right)\sqrt{\left(x+1\right)\left(y+2\right)}\\3x^2-8x-3=4\left(x+1\right)\sqrt{y+2}\end{cases}}\)
Giải các phương trình :
a) \(\sqrt{2}-x=\sqrt[4]{17-4\sqrt{2}x^3-8\sqrt{2}x}\)
b) \(\sqrt{3x}+\sqrt{15-3x}=\sqrt{8x-5}\)