Giải phương trình \(\frac{1}{{x - 1}} - \frac{{4x}}{{{x^3} - 1}} = \frac{x}{{{x^2} + x + 1}}.\)
giải phương trình:\(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
giải bất phương trình: 2x+3<6-(3-4x)
1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
ĐKXĐ : \(x\ne\pm3\)
\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow-7x+3=-4x-15\)
\(\Leftrightarrow-7x+4x=-15-3\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=6\)( tmđk )
Vậy x = 6 là nghiệm của phương trình
2) 2x + 3 < 6 - ( 3 - 4x )
<=> 2x + 3 < 6 - 3 + 4x
<=> 2x - 4x < 6 - 3 - 3
<=> -2x < 0
<=> x > 0
Vậy nghiệm của bất phương trình là x > 0
Giải phương trình :
\(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+4x+3}+...+\frac{1}{x^2+199x+9900}=\frac{25}{51}\)
ĐKXĐ \(x\ne0,-1,-2,...,-100\)
\(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+...+\frac{1}{x^2+199x+9900}=\frac{25}{51}\)
\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{x^2+x+2x+2}+...+\frac{1}{x^2+99x+100x+9900}=\frac{25}{51}\)
\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)+2\left(x+1\right)}+....+\frac{1}{x\left(x+99\right)+100\left(x+99\right)}=\frac{25}{51}\)
\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+99\right)\left(x+100\right)}=\frac{25}{21}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{25}{21}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+100}=\frac{25}{21}\)
\(\Leftrightarrow\frac{x+100-x}{x\left(x+100\right)}=\frac{25}{21}\)
\(\Leftrightarrow\frac{100}{x\left(x+100\right)}=\frac{25}{21}\)
\(\Leftrightarrow25x^2+2500x=2100\)
\(\Leftrightarrow x^2+100x-84=0\)
\(\Leftrightarrow x^2+2.x.50+50^2-50^2-84=0\)
\(\Leftrightarrow\left(x+50\right)^2-2584=0\)
\(\Leftrightarrow\left(x+50-2\sqrt{646}\right)\left(x+50+2\sqrt{646}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-50+2\sqrt{646}\\x=-50-2\sqrt{646}\end{cases}}\)
Vậy ...
Lê Tài Bảo Châu Vậy ý bạn là \(x^2+4x+3=\left(x+2\right)\left(x+3\right)\)?????
Ban đầu mik cũng có ý tưởng như bạn nhưng thấy nó k đúng với hạng tử thứ 3, xong mới đăng lên đây tìm lời giải khác á~
p/s: nhưng cũng có thể xảy ra trường hợp đề bài sai :((
Giải phương trình:
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+16x +63}=\frac{1}{5}\)
ĐK:\(x\ne-1;-3;-5;-7;-9\)
\(pt\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}+\frac{2}{\left(x+7\right)\left(x+9\right)}=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-...-\frac{1}{x+9}=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+9}=\frac{2}{5}\)\(\Leftrightarrow\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)
\(\Leftrightarrow2\left(x+1\right)\left(x+9\right)=40\)\(\Leftrightarrow x^2+10x-11=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+11=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}\) (thoả)
Vậy....
Giải phương trình:
\(\frac{x+4}{x^2-3x+2}-\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
Phân tích : x2-3x +2=(x-1)(x-2) , x2-4x +3 = (x-1 )(x-3) , điều kiện : x # 1, x # 2 ,x # 3
pt tương đương với : \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}=\frac{2x+5+x+1}{\left(x-1\right)\left(x-3\right)}\)
<=> \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}=\frac{3\left(x+2\right)}{\left(x-1\right)\left(x-3\right)}\)
<=> \(\frac{\left(x+4\right)\left(x-3\right)-3\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)
<=> \(\frac{x\left(1-2x\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)
<=> x=0 hoặc x=1/2
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+16x+63}=\frac{1}{5}\)\(=\frac{1}{5}\)
Giải phương trình
xin lỗi nha, bài đó bằng có một cái 1/5 thôi, tại viết sai
ĐK : \(X\ne-1;-3;-7;-9\)
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+16x+63}=\frac{1}{5}\)
\(\frac{1}{\left(x+2\right)^2-1}+\frac{1}{\left(x+4\right)^2-1}+\frac{1}{\left(x+6\right)^2-1}+\frac{1}{\left(x-8\right)^2-1}=\frac{1}{5}\)
\(\frac{1}{\left(x+2-1\right)\left(x+2+1\right)}+\frac{1}{\left(x+4-1 \right)\left(x+4+1\right)}+\frac{1}{\left(x+6-1\right)\left(x+6+1\right)}+\frac{1}{\left(x+8-1\right)\left(x+8+1\right)}=\frac{1}{5}\)
\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}=\frac{1}{5}\)
\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+....-\frac{1}{x+9}\right)=\frac{1}{5}\)
\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+9}\right)=\frac{1}{5}\)
\(\frac{1}{x+1}-\frac{1}{x+9}=\frac{1}{5}:\frac{1}{2}=\frac{2}{5}\)
\(\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)
\(2\left(x+1\right)\left(x+9\right)=40\)
\(2x^2+20x+18=40\Leftrightarrow x^2+10x+9=20\)
\(\Leftrightarrow x^2+10x-11=0\Leftrightarrow x^2+10x-10-1=0\)
\(\Leftrightarrow\left(x^2-1\right)+\left(10x-10\right)=0\Leftrightarrow\left(x-1\right)\left(x+1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+11\right)=0\)
\(\orbr{\begin{cases}x-1=0\\x++11=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}}\)( Thõa mãn )
Vậy ...............
x^2 + 4x + 3 = (x+1)(x+3)
x^2 + 8x + 15 = (x+3)(x+5)
x^2 + 12x + 35 = (x+5)(x+7)
x^2 + 16x + 63 = (x+7)(x+9)
Bạn phân tích ra quy luật rồi thì bạn giải tiếp sẽ có:
1/x+1 -1/x+9 = 2/5
8/(x+1)(x+9) =2/5
(x+1)(x+9) = 20
x^2 +10x+9 = 20
x^2 +10x -11 = 0
(x-1)(x+11) = 0
Vậy x=1 hoặc x= -11(thỏa măn ĐKXĐ)
giải phương trình sau
(2x-1)2+(2-x) (1-2x)=0
[(3-4x)(x+2)] =x2+4x+4
\(\frac{5x-2}{2-2x}+\frac{2x-1}{2}=1-\frac{x^2+x-3}{1-x}\)
B1 :Giải phương trình
a,\(\frac{3\left(x-3\right)}{4}-1=\frac{2x+3\left(x+1\right)}{6}-\frac{7+12x}{12}\)
b,\(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
c,\(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\)
d,I7-xI-5x=1
B2:Giải bất phương trình
a,\(\left(x-2\right)\left(x+2\right)\ge x\left(x-4\right)\)
b,\(\frac{x-1}{4}-1\ge\frac{x+1}{3}+8\)
Giải phương trình:
\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4x}{x^2-1}\)
\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4x}{x^2-1}\)
\(\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4x}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4x}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4x\)
\(\Leftrightarrow x^2+2x+1-\left(x^2-2x+1\right)-4x=0\)
\(\Leftrightarrow x^2+2x+1-x^2+2x-1-4x=0\)
\(\Leftrightarrow0=0\)( luôn đúng )
Vậy pt đúng với mọi x là số thực
giải phương trình hộ minh nha mấy bạn <3
a) \(\frac{3x-1}{x-1}-\frac{2x+5}{3}+\frac{4}{x^2-2x-3}=1\)
b) \(\frac{5}{x^2+x-6}+\frac{2}{x^2+4x+3}=\frac{-3}{2x-1}\)
c) \(\frac{4x^2+16}{x^2+16}=\frac{3}{x^2+1}+\frac{5}{x^2+3}+\frac{7}{x^2+5}\)
Làm đc 2 bài đầu chưa, t làm câu cuối cho, hai câu đầu dễ í mà
Giải phương trình
a) \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}+\frac{x+1}{3}=x+\frac{7}{12}\)
b) \(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)
a) \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}+\frac{x+1}{3}=x+\frac{7}{12}\)
\(\frac{3.3\left(2x+1\right)}{12}-\frac{2\left(5x+3\right)}{12}+\frac{4\left(x+1\right)}{12}=\frac{12x+7}{12}\)
\(18x+9-10x-6+4x+4=12x+7\)
\(0x=0\) ( vô số nghiệm )
Vậy x \(\in\)R
b) ĐKXĐ : x \(\ne\)-1;-3;-5;-7
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)
\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{3}{16}\)
\(\frac{1}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}\right)=\frac{3}{16}\)
\(\frac{1}{x+1}-\frac{1}{x+7}=\frac{3}{8}\)
\(\left(x+1\right)\left(x+7\right)=16\)
Ta thấy x+1 và x+7 là 2 số cách nhau 6 đơn vị . Mà x + 1 < x + 7
\(\Rightarrow\)\(\hept{\begin{cases}x+1=2\\x+7=8\end{cases}\Rightarrow x=1}\)
hoặc \(\hept{\begin{cases}x+1=-2\\x+7=-8\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\x=-15\end{cases}}\)( loại )
Vậy x = 1