Ai giúp với:
CMR:
\(A=\left(x+3\right):\left(x-11\right)+2017\) luôn dương
B=\(-9x^2+12x-15\)luôn âm.
1. Chứng minh rằng : Giá trị biểu thức sau luôn luôn dương
a) \(x^2-3x+3\)
b) \(x^2-5x+7\)
c) \(x^2-x+\frac{1}{3}\)
d) \(3x^2+5x+2\)
e) \(4x^2+x+1\)
2. Chứng minh rằng giá trị của biểu thức sau luôn luôn âm với mọi x
a) \(-9x^2+12x-15\)
b) \(-5-\left(x-1\right)\left(x+2\right)\)
c) \(11-10x-x^2\)
d) \(-3x^2+10x+20\)
\(a;x^2-3x+3=x^2-2\cdot\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+3\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\Leftrightarrow x^2-3x+3>0\forall x\)
a, TA CO X 2 -3X+3=X2-3X+(3/2)2 +3/4=(X-3/2)2+3/4 >0
TUONG TU
Lần sau bạn ra ít một thôi nha.Mik chia ra làm 2 nha !
b
\(x^2+5x+7\)
\(=\left(x^2+2\cdot\frac{5}{2}x+\frac{25}{4}\right)+\frac{3}{4}\)
\(=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}>0\)
c
\(x^2-x+\frac{1}{3}\)
\(=\left(x^2-2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{12}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{1}{12}>0\)
d
\(3x^2+5x+2\)
\(=3\left(x^2+2\cdot\frac{5}{6}\cdot x+\frac{25}{36}\right)-\frac{3}{36}\)
\(=3\left(x+\frac{5}{6}\right)^2-\frac{3}{36}\left(trueorfalse??\right)\)
e
\(4x^2+x+1\)
\(=4\left(x^2+2\cdot\frac{1}{8}\cdot x+\frac{1}{64}\right)+\frac{15}{16}\)
\(=4\left(x+\frac{1}{8}\right)^2+\frac{15}{16}>0\)
Câu d đề sai nha !
Chứng minh rằng :
\(A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-x^2-31\)
Luôn luôn không âm với mọi giá trị của x
Đặt x2+1=a(a\(\ge1\))
=> A= a4+9a3+21a2-a-30
=(a-1)(a3+10a2+31a+30)
Do a\(\ge1\)=>\(\hept{\begin{cases}a-1\ge0\\a^3+10a^2+31a+30>0\end{cases}}\)
=> A\(\ge0\)(ĐPCM)
a) Tìm tất cả các giá trị của tham số m để \(g\left(x\right)=4mx^2-4\left(m-1\right)x+m-3\) luôn luôn âm với mọi x thuộc R
b) Tìm tất cả các giá trị của tham số m để \(f\left(x\right)=x^2-2\left(m+2\right)x-2m^2+3m+4\) không âm với mọi m thuộc R
c) Bất pt \(x^2+2mx+m^2-5m+6>0\) ( m là tham số thực) có nghiệm với mọi x thuộc R khi \(m\in\left(-\infty;\dfrac{a}{b}\right)\) với \(a,b\in Z\) và \(\dfrac{a}{b}\) là phân số tối giản. Tính giá trị biểu thức a+2b
giải pt:
a,\(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
b,\(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
Chứng tỏ rằng đa thức
\(A=\left(x^2+1\right)^4+9.\left(x^2+1\right)^3+21\left(x^2+1\right)^2-x^2-41\)
luôn luôn không âm với mọi giá trị của x
A= x^8+4x^6+6x^4+4x^2+1+9x^6+27x^4+27x^2+9+21x^4+42x^2+21-x^2-41
=x^8+13x^6+54x^4+72x^2-10
mọi mũ đều là chẵn
đfcm :))
Đề sai nhé bạn nếu x =0 thì giá trị này nhận kq -10 đấy
Chứng minh giá trị của mỗi đa thức sau luôn luôn không âm với mọi giá trị của các biến
a) \(A=\left(x-y\right)^2\left(z^2-2z+1\right)-2\left(z-1\right)\left(x-y\right)^2+\left(x-y\right)^2\)
\(A=\left(x-y\right)^2\left(z^2-2z+1\right)-2\left(z-1\right)\left(x-y\right)^2+\left(x-y\right)^2\)
\(A=\left(x-y\right)^2\left(z-1\right)^2-2\left(x-y\right)\left(z-1\right)\left(x-y\right)+\left(x-y\right)^2\)
\(A=\left[\left(x-y\right)\left(z-1\right)-\left(x-y\right)\right]^2\ge0\) \(\forall x,y,z\)
- Giải giúp mình những câu này với~
a) \(^{x2+2\sqrt{3x}+\sqrt{3}^2}=\left(x+\sqrt{3}\right)^2\))^2
b)(9x^2 -12x +4) - (y+2)^2
c)x^2-2x+2
b)9x^2 -6x +5
c)30-20x+4x2
Lớp 9 lẫn 7 luôn nhé
a và b chắc của lớp 9 nhỉ
\(x^2-2x+2=x^2-x-x+2\)
\(=x\left(x-1\right)-\left(x-1\right)+1\)
\(=\left(x-1\right)^2+1\)
\(9x^2-6x+5=9\left(x^2-\frac{2}{3}x+\frac{5}{9}\right)\)
\(=9\left(x^2-\frac{1}{3}x-\frac{1}{3}x+\frac{5}{9}\right)\)
\(=9\left(x^2-\frac{1}{3}x-\frac{1}{3}x+\frac{1}{9}+\frac{4}{9}\right)\)
\(=9\left[x\left(x-\frac{1}{3}\right)-\frac{1}{3}\left(x-\frac{1}{3}\right)+\frac{4}{9}\right]\)
\(=9\left[\left(x-\frac{1}{3}\right)^2+\frac{4}{9}\right]\)
\(=9\left(x-\frac{1}{3}\right)^2+4\)
Cái kia tương tự.
* C/m các biểu thức sau luôn có giá trị dương vs mọi x.
a) A = \(^{x^2-8x+20}\) b) B = \(4x^2-12x+11\)c) C = \(x^2-x+1\)
* tìm x bt :
\(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right).\left(x-3\right)=36\)
Cm: Ta có:
a) A = x2 - 8x + 20 = (x2 - 8x + 16) + 4 = (x - 4)2 + 4 > 0 \(\forall\) x(vì (x - 4)2 \(\ge\)0 \(\forall\)x ; 4 > 0)
=> A luôn dương với mọi x
b) B = 4x2 - 12x + 11 = [(2x)2 - 12x + 9] + 2 = (2x - 3)2 + 2 > 0 \(\forall\)x (vì (2x - 3)2 \(\ge\)0 \(\forall\)x; 2 > 0)
=> B luôn dương với mọi x
c) C = x2 - x + 1 = (x2 - x + 1/4) + 3/4 = (x - 1/2)2 + 3/4 > 0 \(\forall\)x (vì (x - 1/2)2 \(\ge\)0 \(\forall\)x; 3/4 > 0)
=> C luôn dương với mọi x
* Tìm x
3(x + 2)2 + (2x - 1)2 - 7(x + 3)(x - 3) = 36
=> 3(x2 + 4x + 4) + 4x2 - 4x + 1 - 7(x2 - 9) = 36
=> 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63 = 36
=> 8x + 76 = 36
=> 8x = 36 - 76
=> 8x = -40
=> x = -40 : 8 = -5
\(x^3+3x^2+3x+1+y^3+3y^3+3y+1+x+y+2=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)+1\right)=0\)
\(\Leftrightarrow x+y+2=0\)
(phần trong ngoặc \(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\frac{\left(y+1\right)^2}{4}+\frac{3\left(y+1\right)^2}{4}+1\)
\(=\left(x+1-\frac{y+1}{4}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\) luôn dương)
\(\Rightarrow x+y=-2\)
Mà \(xy>0\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x>0\\-y>0\end{matrix}\right.\)
Ta có: \(\frac{1}{-x}+\frac{1}{-y}\ge\frac{4}{-\left(x+y\right)}=2\) \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\le-2\) (đpcm)
Dấu "=" xảy ra khi và chỉ khi \(x=y=-1\)
2/ \(x;y;z\ne0\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{xz+yz+z^2}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{xy+yz+xz+z^2}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\) dù trường hợp nào thì thay vào ta đều có \(B=0\)
3/ \(\Leftrightarrow mx-2x+my-y-1=0\)
\(\Leftrightarrow m\left(x+y\right)-\left(2x+y+1\right)=0\)
Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà d đi qua
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=0\\2x_0+y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=1\end{matrix}\right.\)
Vậy d luôn đi qua \(A\left(-1;1\right)\) với mọi m