Tìm x sao cho:\(\frac{x-1}{9}+\frac{x-2}{8}+\frac{x-3}{7}=\frac{x-4}{6}\)
Tìm x biết: \(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}.\)
\(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}\)
\(\Rightarrow\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}+3=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}+3\)
\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+4}{6}+1\right)+\left(\frac{x+5}{5}+1\right)=\left(\frac{x+2}{8}+1\right)\)\(+\left(\frac{x+3}{7}+1\right)+\left(\frac{x+6}{4}\right)\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}\right)=\left(x+10\right)\left(\frac{1}{8}+\frac{1}{7}+\frac{1}{4}\right)\)
\(\Rightarrow\left(x+10\right)\frac{43}{90}=\left(x+10\right)\frac{29}{56}\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
cộng 3 vào cả hai vế nên phương trình vẫn bằng nhau
Ta có \(\frac{x+1}{9}+1+\frac{x+4}{6}+1+\frac{x+5}{5}+1=\frac{x+2}{8}+1+\frac{x+3}{7}+1+\frac{x+6}{4}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}-\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{4}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
mà \(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Rightarrow x+10=0\)
\(\Leftrightarrow x=-10\)
tinh bằng cách thuật tiện nhất
\(\frac{1}{10}x\frac{2}{9}x\frac{3}{8}x\frac{4}{7}x\frac{5}{6}x\frac{6}{5}x\frac{7}{4}x\frac{8}{3}x\frac{9}{2}\)
= \(x^8.\frac{1}{10}.\frac{2}{9}.\frac{3}{8}.\frac{4}{7}.\frac{5}{6}.\frac{6}{5}.\frac{7}{4}.\frac{8}{3}.\frac{9}{2}\)
= \(x^8.\frac{1}{10}.\left(\frac{2}{9}.\frac{9}{2}\right).\left(\frac{3}{8}.\frac{8}{3}\right).\left(\frac{4}{7}.\frac{7}{4}\right).\left(\frac{5}{6}.\frac{6}{5}\right)\)
= \(x^8.\frac{1}{10}.1.1.1.1\)
= \(x^8.\frac{1}{10}\)
Mk ko pik co dung ko nua
Tìm x biết
a) x+2x+3x+4x+...+100x=-213
b)\(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
c)3(x-2)+2(x-1)=10
d)\(\frac{x+1}{3}=\frac{x-2}{4}\)
e)\(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
f)\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
a) x + 2x + 3x + ... +100x = -213
=> x . (1 + 2 + 3 +... + 100) = - 213
=> x . 5050 = -213
=> x = - 213 : 5050
=> x = -213/5050
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
=> \(\frac{1}{2}x-\frac{1}{4}x=\frac{1}{3}-\frac{1}{6}\)
=> \(x.\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{1}{6}\)
=> \(x.\frac{1}{4}=\frac{1}{6}\)
=> \(x=\frac{1}{6}:\frac{1}{4}\)
=> \(x=\frac{2}{3}\)
c) 3(x-2) + 2(x-1) = 10
=> 3x - 6 + 2x - 2 = 10
=> 3x + 2x - 6 - 2 = 10
=> 5x - 8 = 10
=> 5x = 10 + 8
=> 5x = 18
=> x = 18:5
=> x = 3,6
d) \(\frac{x+1}{3}=\frac{x-2}{4}\)
=> \(4\left(x+1\right)=3\left(x-2\right)\)
=>\(4x+4=3x-6\)
=> \(4x-3x=-4-6\)
=> \(x=-10\)
Tìm x biết
a) (8-5x).(x+2)+4.(x-2).(x+1)+2.(x-2).(x+2)=0
b)\(\left(-\frac{2}{5}+x\right):\frac{7}{9}+\left(-\frac{3}{5}+\frac{5}{6}\right):\frac{7}{9}=0\)
c)\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2004}\)
1)
\(2\frac{1}{4}x-9\frac{1}{4}=-7\frac{1}{4}\)
\(2\frac{1}{4}x=\left(-7\frac{1}{4}\right)+9\frac{1}{4}\)
\(2\frac{1}{4}x=2\)
\(x=2:2\frac{1}{4}\)
\(x=\frac{8}{9}\)
Vậy \(x=\frac{8}{9}\)
tìm x
a, x+(-7)=-20
b, 8-x=-12
c, /x/-7=-6
g, 5./x+9/=40
d, 5^2.2^2-7./x/=65
e,37-3/x/=(2^3-4)
f, /x/+/-5/=/-37/
h,\(\frac{-5}{6}+\frac{8}{3}+\frac{-29}{6}\frac{< }{_{ }-_{ }}x\frac{< }{-}\frac{-1}{2}+2+\frac{5}{2}\)
a) \(x+\left(-7\right)=-20\)
\(\Rightarrow x=-20+7\)
\(\Rightarrow x=-13\)
Vậy \(x=-13\)
b) \(8-x=-12\)
\(\Rightarrow x=8-\left(-12\right)\)
\(\Rightarrow x=20\)
Vậy \(x=20\)
c) \(|x|-7=-6\)
\(\Rightarrow|x|=-6+7\)
\(\Rightarrow|x|=1\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy \(x\in\left\{1;-1\right\}\)
d) \(5^2.2^2-7.|x|=65\)
\(\Rightarrow\left(5.2\right)^2-7.|x|=65\)
\(\Rightarrow10^2-7.|x|=65\)
\(\Rightarrow100-7.|x|=65\)
\(\Rightarrow7.|x|=35\)
\(\Rightarrow|x|=5\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
Vậy \(x\in\left\{5;-5\right\}\)
e) \(37-3.|x|=2^3-4\)
\(\Rightarrow37-3.|x|=8-4\)
\(\Rightarrow37-3.|x|=4\)
\(\Rightarrow3.|x|=33\)
\(\Rightarrow|x|=11\)
\(\Rightarrow\orbr{\begin{cases}x=11\\x=-11\end{cases}}\)
Vậy \(x\in\left\{11;-11\right\}\)
f) \(|x|+|-5|=|-37|\)
\(\Rightarrow|x|+5=37\)
\(\Rightarrow|x|=32\)
\(\Rightarrow\orbr{\begin{cases}x=32\\x=-32\end{cases}}\)
Vậy \(x\in\left\{32;-32\right\}\)
g)\(5.|x+9|=40\)
\(\Rightarrow|x+9|=8\)
\(\Rightarrow\orbr{\begin{cases}x+9=8\\x+9=-8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=-17\end{cases}}\)
Vậy \(x\in\left\{-1;-17\right\}\)
h) \(-\frac{5}{6}+\frac{8}{3}+\frac{-29}{6}\le x\le\frac{-1}{2}+2+\frac{5}{2}\)
\(\Rightarrow\frac{-5}{6}+\frac{16}{6}+\frac{-29}{6}\le x\le\frac{-1}{2}+\frac{4}{2}+\frac{5}{2}\)
\(\Rightarrow-3\le x\le4\)
Vậy \(-3\le x\le4\)
câu a
x+(-7)=-20
x=-20-(-7)
x=-13
Tìm các số hữu tỉ x trong mỗi trường hợp sau:
a) \(\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-x-\frac{1}{4}\\ b.4-1\frac{1}{3}< x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\)
a) Ta có:
\(\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-x-\frac{1}{4}\\ \Rightarrow x+\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-\frac{1}{4}\\ \Rightarrow x>\frac{2}{3}+\frac{4}{9}-\frac{1}{4}-\frac{1}{6}-\frac{4}{15}\\ \Rightarrow x>\left(\frac{6}{9}+\frac{4}{9}\right)-\left(\frac{15}{60}+\frac{10}{60}+\frac{16}{60}\right)\)
\(x>\frac{10}{9}-\frac{41}{60}\\ x>\frac{200-123}{180}\Rightarrow x>\frac{77}{180}\)
b) Bất đẳng thức kép
\(4-1\frac{1}{3}< x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\)
có nghĩa là ta phải có hai bất đẳng thức đồng thời:
\(x+\frac{1}{5}>4-1\frac{1}{3}\) và \(x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\)
Ta tìm các giá trị của x cần thỏa mãn bất đẳng thức thứ nhất:
\(x+\frac{1}{5}>4-1\frac{1}{3}\Rightarrow x>4-1\frac{1}{3}-\frac{1}{5}\\ \Rightarrow x>\frac{37}{15}\)
Từ bất đẳng thức thứ hai
\(x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\Rightarrow x< \frac{86}{7}-\frac{27}{8}-\frac{1}{5}\\ \Rightarrow x< \frac{2439}{280}.\)
Như vậy các số hữu tỉ x cần thỏa mãn:
\(\frac{37}{15}< x< \frac{2439}{280}\)
Lát đăng tiếp, giờ mắc học pài với ăn cơm, ngày mai kiểm tar sử nữa
bài 15 tìm x biết
a\(\frac{x}{4}-\frac{3}{7}+\frac{2}{5}=\frac{31}{140}\)
b\(\frac{5}{12}+\frac{5}{x}-\frac{1}{8}=\frac{1}{2}\)
c\(x+\frac{1}{9}-\frac{3}{5}=\frac{3}{6}\)
d\(\frac{3}{4}-x+\frac{6}{-11}=\frac{5}{6}\)
e\(x-\frac{1}{9}-\frac{3}{5}=\frac{3}{6}\)
Tìm số nguyên x
a) \(\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
b)\(\frac{5}{17}+\frac{-9}{4}+\frac{-26}{31}+\frac{12}{17}+\frac{-11}{31}< \frac{x}{9}\le\frac{-3}{7}+\frac{7}{15}+\frac{4}{-7}+\frac{8}{15}\)
\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)
\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)
\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)
\(\Rightarrow-1\le x< 6\)
\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)
Bài b tương tự
bạn ơi bạn giải câu b được ko. mk ko biết làm câu b