Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
PHẠM ĐĂNG KHÔI
Xem chi tiết
nguễn thị minh ánh
Xem chi tiết
vu duc duy
24 tháng 7 2016 lúc 9:11

can bac 2 cua 2 la 1so vo ti nen cong voi a bat ki (a thuoc Z+)thi a van la so vo ti

Ngô Văn Phương
Xem chi tiết
Phạm Tuấn Kiệt
7 tháng 11 2015 lúc 16:47

Giả sử \(\sqrt{2}+a=b\)là số hữu tỉ

\(=>\sqrt{2}=b-a\)mà b là số hữu tỉ và a là số nguyên  dương nên \(\sqrt{2}\) là số hữu tỉ (trái với đề bài)

=>\(\sqrt{2}+a\) với mọi \(a\)thuộc Z+

 

Phan Phương Oanh
Xem chi tiết
Phạm Trung Hải
24 tháng 8 2015 lúc 21:31

+)Vì x<y

Suy ra a/b<c/d

Suy ra a.b+a.d<b.c+b.a

Suy ra a.(b+d)<b.(c+a)

Suy ra a/b<c+a/b+d

Suy ra a/b<c+a/b+d<c/d

Suy ra x<z<y

Nguyễn Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2022 lúc 20:29

A=B(6)

B=BC(3;2)=B(6)

Do đó: A=B

Vi Linh Chi
Xem chi tiết
o0o I am a studious pers...
5 tháng 8 2016 lúc 15:49

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

Minh Thư
8 tháng 10 2019 lúc 20:53

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

Thi Bùi
17 tháng 7 2021 lúc 18:25

phản chứng : giả sử tất cả thuộc Q a đặt a= căn 2+ căn 3(a thuộc Q) . bình phương 2 vế ta có a^2=5+2 căn 6=> căn 6 = a^2-5/2 thuộc Q => vô lí

b đặt căn 2 + căn 3 + căn 5 = a. chuyển căn 5 sang vế a bình phương lên ta có 2 căn 6=a^2-2 căn 5 a

bình phương 1 lần nữa =>căn 5= a^4+20a^2-24/4a^3 thuộc Q => vô lí

c bình phương lên => căn 2=A-1 thuộc Q => vô lí

d tương tự căn 3=Bn-mn thuộc Q => vô lí

chúc bạn học tốt

Khách vãng lai đã xóa
Nguyễn Minh Hoàng
Xem chi tiết
Trần Thị Thảo
Xem chi tiết
Nguyễn Phương Anh
27 tháng 6 2017 lúc 22:48

Xét hai trường hợp b nguyên dương và b nguyên âm. 

_xét b nguyên dương. Vì a,b cùng dấu nên a nguyên dương. Ta có a/b> 0/b=0. Vậy a/b là số hữu tỉ dương.

_xét b nguyên âm

Ta có -b nguyên dương. Vì a,b cùng dấu nên a nguyên âm. Suy ra a nguyên dương. Do đó a/b= -a/-b> 0/-b = 0. Vậy a/b là số hưu tỉ dương

gì cũng được
Xem chi tiết