chứng minh rằng \(\sqrt{2}\) + a ( a thuộc Z+) là số vô tỉ
Chứng minh rằng: \(\sqrt{2}+a\) là số vô tỉ với mọi a thuộc Z+.
cho các số hữu tỉ x=a/b,y=c/d. z=a+c/b+d(a,b,c,d thuộc Z;b,d >0).Chứng minh rằng nếu x<y thì x<z<y
Chứng minh rằng:
a) \(\sqrt{2}+\sqrt{3}\) là số vô tỉ
b) \(\sqrt{2}+\sqrt{3}+\sqrt{5}\) là số vô tỉ
c) A = \(\sqrt{1+\sqrt{2}}\)là số vô tỉ
d) B = \(m+\frac{\sqrt{3}}{n}\)là số vô tỉ ( m;n thuộc Q )
Cho tập A gồm có 2020 số thực có tính chất: Với mọi a,b phân biệt thuộc A thì \(a^2+b\sqrt{2}\) là số hữu tỉ. Chứng minh rằng với mọi a thuộc A thì \(a\sqrt{2}\) là số hữu tỉ
cho số hữu tỉ a/b khác 0 , với a,b thuộc Z và b khác 0. Chứng tỏ rằng: nếu a và b cùng dấu thì a/b là số hữu tỉ dương.
cho a,b thuộc n chứng minh rằng nếu a.b chia hết cho 2 thì tìm được số c thuộc z sao cho a^2+b^2+c^2 là số chính phương
cho a thuộc Z. Chứng minh :
a) \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\) là số nguyên
b)cho a,b thuộc Z. Chứng minh (11a+2b)/19 thuộc Z <=> (18a+5b)/19 thuộc Z
cho a thuộc Q, b thuộc I . chứng tỏ rằng a+b là số cô tỉ