Cho tam giác ABC có góc A = 90 độ, BC = 10cm. Đường cao AH = 4cm. Gọi I,K lần lượt là chân đường vuông góc kẻ từ H xuống AB, AC. Tính diện tích tứ giác AIHK
Cho tam giác ABC vuông tại A có BC=10cm, AH =4cm ( AH là đường cao ). Gọi I,K là chân đường vuông góc kẻ từ H xuống các cạnh AB,AC. Tính chu vi và diện tích tứ giác AIHK
Lời giải:
Ta có:
$AB.AC=AH.BC=40$
$AB^2+AC^2=BC^2=100$
$\Rightarrow (AB+AC)^2=AB^2+AC^2+2AB.AC=180$
$\Rightarrow AB+AC=6\sqrt{5}$
Theo định lý Viet đảo, $AB,AC$ là nghiệm của pt $X^2-6\sqrt{5}X+40=0$
$\Rightarrow AB=4\sqrt{5}; AC=2\sqrt{5}$ (giả sử $AB>AC$)
Dễ thấy $AIHK$ là hình chữ nhật do có 3 góc vuông $\widehat{A}=\widehat{I}=\widehat{K}=90^0$
$\Rightarrow IK=AH=4$
Theo định lý Pitago: $AI^2+AK^2=IK^2=16(1)$
Mặt khác, theo hệ thức lượng trong tam giác vuông:
$AI.AB=AH^2$
$AK.AC=AH^2$
$\Rightarrow AI.AB=AK.AC\Rightarrow \frac{AI}{AK}=\frac{AC}{AB}=\frac{2\sqrt{5}}{4\sqrt{5}}=\frac{1}{2}(2)$
Từ $(1);(2)\Rightarrow AI=\frac{4\sqrt{5}}{5}; AK=\frac{8\sqrt{5}}{5}$ (cm)
Chu vi AIHK:
$P=2(AI+AK)=2(\frac{4\sqrt{5}}{5}+\frac{8\sqrt{5}}{5})=\frac{24\sqrt{5}}{5}$ (cm)
Diện tích AIHK:
$S=AI.AK=\frac{4\sqrt{5}}{5}.\frac{8\sqrt{5}}{5}=6,4$ (cm vuông)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, K là chân các đường vuông góc kẻ từ H xuống AB, AC. Tính diện tích tứ giác AIHK biết BC= 10cm, AH = 4cm.
Cho tam giác ABC vuông tại A, BC = 10cm, đường cao AH = 4cm. Gọi I, K là chân đường vuông góc kẻ từ H theo thứ tự xuống AB, AC. Tính S AIHK
Cho tam giác ABC vuông góc tại A, đường cao AH. Gọi I vs K lần lượt là hình chiếu của H trên AB và AC.
a, Tứ giác AIHK là hình gì ? Vì sao ?
b, So sánh góc AIK và góc ACB
c, Cho BC= 10cm, AH= 4cm. Tính diện tích tam giác AIK
a) Tứ giác AIHK có góc H=K=I=A=90độ
=> AIHK LÀ HÌNH CHỮ NHẬT ( tỨ GIÁC CÓ 3 GÓC VUÔNG)
Cho tam giác ABC vuông tại A, BC=10cm, đường cao AH=4cm. Gọi IK là chân đường vuông góc kẻ từ AH theo thứ tự này AB và AC. Tính SAIHK.
cho tam giác ABC vuông tại A có AH là đường cao. Gọi chân đường vuông góc hạ từ H xuống AB,AC lần lượt tại M và N. Gọi I, K lần lượt là trung điểm cảu BH và HC.
a, Tứ giác IMNK là hình gì? Vì sao?
b, Gọi O là trung điểm của BC. CMR OA vuông góc với MN
c, Tính diện tích tứ giác IMNK biết BH=4cm, CH=9cm
d, CMR \(AB^2.CN=AC^3.BM\)
Cho tam giác ABC vuông tại A có trung tuyến AM, đường cao AH. Trên tia AM lấy D sao cho AM=MD
a)CM tứ giác ABCD là hình chữ nhật
b)Gọi E,F lần lượt là chân đường vuông góc kẻ từ H đến AB và AC. CM AEHF là hình chữ nhật
c)Gọi I,K lần lượt là chân đường vuông góc kẻ từ M đến AB và AC. CM góc IHK=90 độ
Cho tam giác ABC vuông tại A. Có AC = 3cm BC = 4cm. Tính góc B, C và cạnh BC. Cho đường cao AH. Tính AH, BH. Từ H kẻ HE là HF lần lượt vuông góc với AB, AC. Tứ giác AEHF là hình gì, vì sao. Tính diện tích AEHF
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{EAF}=90^0\)
Do đó: AEHF là hình chữ nhật
BT1: Cho tam giác ABC, phân giác AD. Gọi E và F lần lượt là hình chiếu của B và C lên AD.
a, Tam giác ABE đồng dạng với tam giác ACF; tam giác BDE đồng dạng với tam giác CDF
b, AE.DF = AF.DE
BT2: Cho tam giác ABC vuông góc tại A, đường cao AH. Gọi I vs K lần lượt là hình chiếu của H trên AB và AC.
a, Tứ giác AIHK là hình gì ? Vì sao ?
b, So sánh góc AIK và góc ACB
c, Cho BC= 10cm, AH= 4cm. Tính diện tích tam giác AIK ?
BT 1:
a/ Xét tg ABE và tg ACF có
^BAE=^CAF (AD là phân giác ^BAC)
^AEB=^AFC=90
=> tg ABE đồng dạng với tg ACF => \(\frac{AE}{AF}=\frac{BE}{CF}\) (1)
b/ Xét tg BDE và tg CDF có
^BDE=^CDF (góc đối đỉnh)
^BED=^CFD=90
=> tg BDE đồng dạng với tg CDF => \(\frac{DE}{DF}=\frac{BE}{CF}\) (2)
Từ (1) và (2) => \(\frac{AE}{AF}=\frac{DE}{DF}\Rightarrow AE.DE=AF.DE\)
BT 2:
a/ HI vg AB, AK vg AB => HI//AK ( cùng vg với AB)
cm tương tự cũng có AI//KH (cùng vg với AC)
=> AIHK là hbh (có các cặp cạnh dối // với nhau từng đôi một)
^BAC=90
=> AIHK là hcn
b/
+ Ta có ^ACB=^AHK (cùng phụ với ^HAC) (1)
+ Xét 2 tg vuông IAK và tg vuông HKA có
IA=HK (AIHK là hcn), AK chung => tg IAK = tg HKA (hai tg vuông có các cạnh góc vuông từng đội một băng nhau)
=> ^AIK=^AHK (2)
Từ (1) và (2) => ^AIK=^ACB