CMR trong 7 số nguyên tố bất kì luôn tồn tại 2 số có hiệu chia hết cho 12
CMR trong 7 số nguyên tố bất kì luôn tồn tại hai số có hiệu chia hết cho 12
Please help me!!!
chứng minh rằng trong 7 số nguyên tố bất kì, luôn tồn tại hai số có hiệu chia hết cho 12
chứng minh rằng trong 6 số tự nhiên bất kì,tồn tại hai số có hiệu chia hết cho 9
chứng minh rằng trong 7 số nguyên tố bất kì, luôn tồn tại hai số có hiệu chia hết cho 12
chứng minh rằng trong 6 số tự nhiên bất kì,tồn tại hai số có hiệu chia hết cho 9
Bài 1: CMR từ 102 số tự nhiên bất kì luôn có thể tồn tại 2 số có tổng hoặc hiệu chia hết cho 200.
Bài 2: CMR từ 10 số tự nhiên bất kì (a1, a2, a3, ... , a10) thì luôn tồn tại 4 số có tổng chia hết cho 4.
Bài 3: CMR từ 13 số tự nhiên bất kì luôn tồn tại 4 số có tổng chia hết cho 4.
CMR: trong 42 số tự nhiên bất kì luôn tồn tại 2 số có hiệu chia hết cho 41
Theo nguyên tắc Di-rich-lê ta có: Trong 42 số tự nhiên bất kì có it nhất 2 số khi chia cho 41 có cùng số dư.
=> Hiệu cuả 2 số đó chia hết cho 41
=> ĐPCM
cho 52 số tự nhiên bất kì ,CMR luôn tồn tại trong đó 2 số có tổng hoặc hiệu chia hết cho 100
Bài 1 : Cho 7 số tự nhiên bất kì. CMR bao giờ cũng có thể chọn ra 2 số có hiệu chia hết cho 6
Bài 2 : CMR trong 6 số tự nhiên liên tiếp luôn tìm được hiệu 2 số chia hết cho 5
Bài 3 : Cho 3 số lẻ. CMR tồn tại 2 số có tổng và hiệu chia hết cho 8
Bài 1
6 số tự nhiên bất kì khi chia cho 6 thì xảy ra 6 trường hợp về số dư (0;1;2;3;4;5), còn 1 số kia thì cũng có thể xảy ra 1 trong 6 trường hợp
Số này nếu trừ cho 1 trong 6 số kia thì chắc chắn có 1 số thỏa mãn
Bài 2
5 số tự nhiên liên tiêp này chia cho 5 cũng xảy ra 5 th về dư, chứng minh tương tự bài 1. Bạn cố gắng dùng từ hay hơn nha
1.Trong một cuộc họp có 6 người.Người ta nhận thấy cứ 3 người bất kì thì có 2 người quen nhau.Chứng minh rằng 6 người luôn có 3 người đôi một quen nhau.
2.Cho dãy số 10;10^2;10^3....;10^10.CMR trong dãy số trên tồn taij 1 số chia 19 dư 1.
3.Cho 3 số ng tố lớn hơn 3. CMR tồn tại 2 số ng tố có tổng hoặc hiệu chia hết cho 12.
Bài 1:
Các đại biểu tương ứng với 6 điểm A, B, C, D, E, F. Hai đại biểu X và Y nào đó mà quen nhau thì ta tô đoạn thẳng XY bằng màu xanh còn nếu X vá Y không quen nhau thì tô đoạn XY màu đỏ.
Xét 5 đoạn thẳng AB, AC, AD, AE, AF: Theo nguyên tắc Dirichlet thì tồn tại ba đoạn cùng màu. Giả sử AB, AC, AD màu xanh. Xét ba điểm B, C, D: vì 3 đại biểu nào cũng có hai người quen nhau suy ra một trong ba đoạn BC, CD, DB màu xanh.
Giả sử BC màu xanh thì A, B, C đôi một quen nhau.
Còn nếu AB, AC, AD màu đỏ thì B, C, D đôi một quen nhau.
Theo nguyên lý Di-rich-le ta suy ra: Tồn tại hai số trong 20 số khi chia cho 19 có cùng số dư. Suy ra hiệu của hai số đó chia hết cho 19.
Giả sử 10n, 10m là hai số có cùng số dư khi chia cho 19 (1 ≤ n < m ≤ 20).
10m – 10n ⋮ 1910n.(10m-n – 1) ⋮ 19, mà 10n không chia hết cho 19 nên suy ra:10m-n – 1 ⋮ 19
10m-n – 1 = 19k (k ∈ N)10m-n = 19k + 1 (đpcm).Bài 3:
Một số tự nhiên n khi chia cho 12 chỉ có thể có số dư là 0;1;2;3;4;5;6;7;8;9;10;11
Do n là nguyên tố lớn hơn 3 nên khi n chia cho 12 chỉ có thể có số dư là: 1;5;7;11
Mặt khác, cho 5 số nguyên tố theo nguyên lí Direchlet tồn tại 2 số có chung số dư khi chia cho 12.
=> Tồn tại 2 chữ số có hiệu chia hết cho 12.
1.Cho 5 số tự nhiên bất kì.CMR trong 5 số đó tồn tại 3 số có tổng chia hết cho 3
2.Cho 3 số nguyên tố lớn hơn 3.CMR tồn tại 2 số có tổng hoặc hiệu chia hết cho 2
3.CMR trong 12 số tự nhiên tùy ý, bao giờ ta cũng chọn đc 2 số mà hiệu của chúng chia hết cho 11
Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3.
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3.
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.