2 tìm UCLN
a)2n + 1 và 3n + 1 (n thuộc N)
b) 5n + 6 và 8n + 7 ( n thuộc N)
B1
a) Tìm ước chung của n+1; 3n+2(n thuộc N)
b) Tìm ước chung của 2n+3 và 3n+4 (n thuộc N)
B2 Biết rằng 2 số 5n+6 và 8n+7 không phải là 2 số nguyên tố cùng nhau. tìm ước chung lớn nhất ( 5n+6; 8n+7) n thuộc N
tìm các ƯC của các cặp số sau từ đó suy ra các cặp số nào nguyên tố cùng nhau vs n thuộc N
a) 2n+1 và 3n+1
b) 5n+6 và 8n+7
c)7n+10 và 5n+7
d) n^2+2n+2 và n+1
a) Gọi ƯC cua 2n+1 ; 3n+1 là d
\(\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\)
\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\\ \Rightarrow6n+3-6n-2⋮d\\ \Rightarrow1⋮d\\ d=1 \)
b) Gọi ƯC cua 5n+6 và 8n+7 là d
\(\Rightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\\\Rightarrow 40n+48-40n-35⋮d\\\Rightarrow5⋮d\\ d=5 \)
c)7n+10 và 5n+7
Gọi d=(7n+10,5n+7) với n \(\in\) N và d \(\in\) N*
\(\Rightarrow\)7n+10\(⋮\)d\(\Rightarrow\)5(7n+10)\(⋮\)d\(\Rightarrow\)35n+50\(⋮\)d (1)
\(\Rightarrow\)5n+7\(⋮\)d \(\Rightarrow\)7(5n+7) \(⋮\)d\(\Rightarrow\)35n+49\(⋮\)d (2)
Từ (1) và (2) suy ra: (35n+50)-(35n+49)\(⋮\)d
35n+50-35n-49 \(⋮\)d
(35n-35n)+(50-49)\(⋮\)d
0 + 1 \(⋮\)d
1 \(⋮\)d
Vì:1\(⋮\)d nên d\(\in\)Ư(1)
Mà:Ư(1)={1} nên d=1
Vậy 2n+1 và 3n+1 là hai số nguyên tố cùng nhau
Câu 4: tìm ƯC của:
a) n và n+1 với n thuộc N
b)5n+6 và 8n+7 với n thuộc N
c)3n+2 và 4n+3 với n thuộc N
Câu 1:
Gọi $d=ƯC(n, n+1)$
$\Rightarrow n\vdots d; n+1\vdots d$
$\Rightarrow (n+1)-n\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯC(n, n+1)=1$
Câu 2:
Gọi $d=ƯC(5n+6, 8n+7)$
$\Rightarrow 5n+6\vdots d; 8n+7\vdots d$
$\Rightarrow 8(5n+6)-5(8n+7)\vdots d$
$\Rigtharrow 13\vdots d$
$\Rightarrow d\left\{1; 13\right\}$
Câu 3:
Gọi $d=ƯC(3n+2, 4n+3)$
$\Rightarrow 3n+2\vdots d; 4n+3\vdots d$
$\Rightarrow 3(4n+3)-4(3n+2)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
1)Tìm ước chung của 2 số ab+ba và 33,biết a+b không chia hết cho 3
2)Tìm ước chung của 2 số 2n+1 và 3n+1 với n thuộc các số tự nhiên
3)Biết hai số:5n+6 và 8n+7 với n thuộc các số tự nhiên là 2 số ko nguyên tố cùng nhau.Tìm ước chung của 5n+6 và 8n+7
B1) Chứng tỏ 2 số 2n + 3 và 3n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc tập hợp N*
B2) Cho 5n + 6 và 8n+ 7. Tìm ƯCLN của chúng với mọi n thuộc tập N.
Gọi d là UCLN(2n+3,3n+5)
\(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
=>d = 1
=>UCLN(2n+3,3n+5) = 1
=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau
Gọi d là UCLN(5n+6,8n+7)
\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}8\left(5n+6\right)⋮d\\5\left(8n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}}\)
\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1;13\right\}\)
Để \(\left(5n+6,8n+7\right)=1\)thì \(d\ne13\)
=> UCLN(5n+6,8n+7) = 1
B1) Gọi d là UCLN của (2n+3) và (3n+5)
Ta có: (2n+3):d và (3n+5):d => 3(2n+3):d và 2(3n+5):d
=> 2(3n+5)-3(2n+3):d <=> (6n+10-6n-9):d <=> 1:d. Do đó UCLN của 2 số đó là 1
Vậy chúng là 2 số nguyên tố cùng nhau.
B2) Cách giải tương tự.
tìm ước chung của 2n+1 và 3n+1 ( n thuộc N)
tìm ước chung của 5n+6 và 8n+7 ( n thuộc N)
tìm x biết
x + 10 chia hết cho 5
x -18 chia hết cho 6
x + 21 chia hết cho 7
500<x<750
Gọi d là UCLN của 2n+1 và 3n+1
Ta có :
\(2n+1⋮d\)
\(3n+1⋮d\)
\(\Rightarrow3\left(2n+1\right)⋮d\)
\(\Rightarrow2\left(3n+1\right)⋮d\)
\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Tìm ước chung
a,n+1 và 2n+5
b,n+3 và 2n+5
c,2n+1 và 3n+7
d,2n+5 và 3n+7
e,5n+6 và 8n+7
a/ước chung là 3
b/ước chung là 1
mk chỉ làm mẫu 2 câu thôi còn bạn tự làm đi
Tìm n thuộc Z, để:
a) 10n + 4 chia hết cho 2n + 7
b) 5n - 4 chia hết cho 3n + 1
c) 2n^2 + n - 6 chia hết cho 2n +1
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
3/
$2n^2+n-6\vdots 2n+1$
$\Rightarrow n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1\in Ư(6)$
Mà $2n+1$ lẻ nên: $2n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$
a) Tìm n thuộc N để 2n +1 và 7n +2 nguyên tố cùng nhau .
b)Tìm n thuộc N và n < 30 để 3n + 4 và 5n + 1 không nguyên tố cùng nhau.