cho tam giác ABC có AB bé hơn AC. Gọi D là trung điểm BC. Chứng minh góc ADB < ADC
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh: a) Tam giác ADB = ADC; b) AD là tia phân giác của góc BAC; c) AD vuông góc BC
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh
a) Tam giác ADB = ADC
b) AD là tia phân giác của góc BAC
c) AD vuông góc BC
Cho tam giác ABC (góc A bé hơn 90 độ), AB=AC. Gọi D là trung điểm của cạnh BC. Chứng minh:
a)tam giác ADB=tam giác ADC
B) AD là tia phân giác của góc A
C) kẻ BE vuông góc AC ( E thuộc AC), CF vuông góc AB ( F thuộc AB). Chứng minh: BF=EC
xét tam giác ADB và tam giác ADC có
AB=AC (gt)
BD=CD ( D là trung điễm BC)
BD cạnh chung
nên tam giác ADB= tam giác ADC (c.c.c)
Cho tam giác ABC có Ab=AC. Gọi D là trung điểm của BC. Chứng minh rằng:
a/ Tam giác ADB=ADC
b/ AD vuông góc BC
a) Xét tam giác ADB và ADC có:
AB=AC(giả thiết)
AD là cạnh chung
BC=DC (giả thiết)
=> tam giác ADB=ADC (c-c-c).
b) Vì hai tam giác ADB và ADC bằng nhau nên => góc ADB = góc ADC
Vì góc ADB và góc ADC là hai góc kề bù nên góc ADB = góc ADC = 90 độ
=> AD vuông góc với BC.
cho tam giác ABC có AB=AC . Gọi D là trung điểm của BC. Chứng minh rằng.
a) tam giác ADB = tam giác ADC
b) AD vuông góc BC
Khỏi vẽ hình nhé!!
a/ Xét tam giác ABD và tam giác ACD có:
AB = AC (GT)
AD: cạnh chung
BD = CD (vì D là trung điểm BC)
=> tam giác ABD = tam giác ACD (c.c.c)
b/ Ta có: tam giác ABD = tam giác ACD (câu a)
=> góc ADB = góc ADC (2 góc tương ứng)
Mà góc ADB + góc ADC = 1800 (kề bù)
=> góc ADB = góc ADC = 1800 : 2 = 900
Vậy AD vuông góc với BC (đpcm)
Cho tam giác ABC có AB bằng AC Gọi D là trung điểm của BC A)chứng minh tam giác ADB bằng tam giác ADC B)Chứng minh AD là phân giác của tam giác ABC C)vẽ DM vuông góc với AB(M thuộc AB) DN vuông góc với AC (N thuộc AC) Chứng minh rằng tam giác ADM bằng tam giác AND và MN//BC
a: Xét ΔADB và ΔADC có
AB=AC
AD chung
BD=CD
Do đó: ΔADB=ΔADC
b: Ta có: ΔABD=ΔACD
=>\(\widehat{BAD}=\widehat{CAD}\)
=>AD là phân giác của góc BAC
c: Xét ΔADM vuông tại M và ΔADN vuông tại N có
AD chung
\(\widehat{DAM}=\widehat{DAN}\)
Do đó: ΔADM=ΔADN
=>AM=AN
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
cho tam giác ABC có AB=AC gọi D là trung điểm của BC chứng minh
tam giác ADB= tam giác ADC
AB//BC
cho tan giác ABC có AB= AC. Gọi D là trung điểm của BC . chứng minh rằng
a) tam giác ADB = tam giác ADC
b)AD là tia phân giác của góc BAC
c)AD vuông góc BC
a, Xét tam giác ADB và tam giác ADC có: AB=AC( giả thiết ) ; BD=DC(giả thiết); cạnh AD chung \(\rightarrow\) Tam giác ADB= tam giác ADC b,Tam giác ADB=tam giác ADC(theo câu a) nên góc DAB=góc DAC(2 góc tương ứng) \(\rightarrow\) AD là tia phân giác của góc BAC c, Vì tam giác ADB=ADC(câu a) nên góc ADB bằng góc ADC( 2 góc tương ứng) (1) Ta có góc ADB+góc ADC=180 độ (kề bù) (2) Từ (1) và (2) \(\rightarrow\) góc ADB=90 độ \(\Rightarrow\) AD vuông góc voi BC
cho tan giác ABC có AB= AC. Gọi D là trung điểm của BC . chứng minh rằng
a) tam giác ADB = tam giác ADC
b)AD là tia phân giác của góc BAC
c)AD vuông góc BC
Cho tam giác ABC cân tại a.Điểm D là trung điểm của BC a) chứng minh tam giác ADB bằng tam giác ADC b) vẽ BE vuông góc với AC (E thuộc AC).Gọi F là giao điểm của AD và BE chứng minh đường thẳng CF vuông góc AB