Help me do my homewok !
\(\frac{10^{10}+1}{10^{11}+1}\)và \(\frac{10^{11}-1}{10^{12}-1}\)
So sánh
Can you help me ?
So sánh :
A = \(\frac{10^{11}-1}{10^{12}-1}\) và B= \(\frac{10^{10}+1}{10^{11}+1}\)
help me
\(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
vì 1012-1>1011+1
=>\(\frac{9}{10^{12}-1}<\frac{9}{10^{11}+1}\)
=>A<B
Ta có:\(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
Vì \(1-\frac{9}{10^{12}-1}<1+\frac{9}{10^{11}+1}\)
Nên A<B
so sánh
\(\frac{100}{10^{11}}+\frac{100}{10^{12}}va\frac{99}{10^{11}}+\frac{101}{10^{12}}\)
\(\frac{10^{10}+1}{10^{11}+1}va\frac{10^{11}+1}{10^{12}+1}\)
s2 Lắc Lư s2 cko hỏi ôg lp mấy z?
so sanh
\(\frac{10^{11}-1}{10^{12}-1}và\frac{10^{10+1}}{10^{11}+1}\)
Can you help me?
A>B or A<B; A=B if A = \(\frac{10^{19}+1}{10^{20}+1}\) and B = \(\frac{10^{20}+1}{10^{21}+1}\)
Cho \(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
So sánh A và B
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Leftrightarrow10A=\frac{10\left(10^{11}-1\right)}{\left(10^{12}-1\right)}=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\left(1\right)\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Leftrightarrow10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=\frac{9}{10^{11}+1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A< B\)
Nếu có 1 phân số a/b < 1 thì a/b < a+n/b+n.
Tương tự ta có: A < (10^11 -1)+11/(10^12 -1)+10
A < 10^11+10/10^12+10
A < 10(10^10+1)/10(10^11+1)
A < 10(10^10+1)/10(10^11+1)
A < 10^10+1/10^11+1
Vậy A < B
Cho A=\(\frac{10^{11}-1}{10^{12}-1}\); B=\(\frac{10^{11}+1}{10^{12}+1}\).so sánh A và B
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}\) theo công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)
\(A< \frac{10^{11}+10}{10^{12}+10}=\frac{10^{10}\left(10+1\right)}{10^{11}\left(10+1\right)}=\frac{10^{10}}{10^{11}}\)
\(\Rightarrow\frac{10^{10}}{10^{11}}=\frac{10^{10}\cdot10^{12}}{10^{11}\cdot10^{12}}=\frac{10^{22}}{10^{23}}\)
\(\Leftrightarrow A< \frac{10^{10}}{10^{11}}=\frac{10^{11}}{10^{12}}\)
Lại áp dụng công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)
\(A< \frac{10^{10}}{10^{11}}=\frac{10^{11}}{10^{12}}< \frac{10^{11}+1}{10^{12}+1}=B\)
\(\Leftrightarrow A< B\)
Hoặc \(A< \frac{10^{11}-1+2}{10^{12}-1+2}=\frac{10^{12}+1}{10^{12}+1}\)
..... (EZ)
\(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
SO SÁNH A VÀ B
CMR 11^(10^n)-1 chia hết cho 10^(n+1)
Help me!:)))
Cho \(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
So sánh A và B
( xét A và B so sánh với 1 nhé)
Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1
Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)
10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1
Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)
Từ (1) và (2) => 10A < 10B
=> A < B
Tk mk nha
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\); \(\frac{10^{10}+1}{10^{11}+1}< 1\)
\(\Rightarrow\)\(A,B< 1\)
Ta có:
\(10^{11}-1>10^{10}+1\); \(10^{12}-1>10^{11}+1\)
\(\Rightarrow A>B\)
Vậy A > B
Có : 10A = 10^12-10/10^12-1 = 1 - 9/10^12-1 < 1
10B = 10^11+10/10^11+1 = 1 + 9/10^11+1 > 1
=> 10A < 10B
=> A < B
Tk mk nha