Cho: S = 3^0 + 3 + 3^2 + 3^3+...+3^1001
a. Tính S
b. Chứng minh S chia hết cho 13
Cho S = 3^2 + 3^4 + ... + 3^998 + 3^1000
a) tính S
b) Chứng minh rằng S chia cho 7 dư 6
Lời giải:
$S=3^2+3^4+3^6+...+3^{998}+3^{1000}$
$3^2S=3^4+3^6+3^8+...+3^{1000}+3^{1002}$
$\Rightarrow 3^2S-S=3^{1002}-3^2$
$\Rightarrow 8S=3^{1002}-9$
$\Rightarrow S=\frac{3^{1002}-9}{8}$
b.
$S=3^2+3^4+(3^6+3^8+3^{10})+(3^{12}+3^{14}+3^{16})+...+(3^{996}+3^{998}+3^{1000})$
$=90+3^6(1+3^2+3^4)+3^{12}(1+3^2+3^4)+...+3^{996}(1+3^2+3^4)$
$=90+(1+3^2+3^4)(3^6+3^{12}+...+3^{996})$
$=90+91(3^6+3^{12}+...+3^{996})$
$=6+ 12.7+7.13(3^6+3^{12}+...+3^{996})$ chia $7$ dư $6$
cho tổng :S=3^0+3^2+3^4+3^6+...........................+3^2014.tính S và chứng minh S chia hết cho 7
\(S=3^0+3^2+3^4+3^6+...+3^{2014}\)
\(=1+3^2+3^4+3^6+...+3^{2014}\)
\(=\left(1+3^2\right)+3^4\left(1+3^2\right)+...+3^{2012}\left(1+3^2\right)\)
\(=7+3^4.7+...+3^{2012}.7=7\left(1+3^4+...+3^{2012}\right)⋮7\)
Vậy ta có đpcm
B1 Không thực hiện phép tính hãy chứng minh:
a,Ta có:39 chia hết cho 13 suy ra 39.2011 chia hết cho 13
b,2010 chia hết cho 3 [Vì 2+0+1+0 bằng 3 chia hết cho 3]nên 2009.2010 chia hết cho 3
B2: Chứng minh rằng : [7n]1992 chia hết cho 49 [n thuộc N]
B3:Chứng minh rằng:
a,S1 bằng 5+52+53+...+51000 chia hết cho 6
b,S2 bằng 2+22+23+...+2100 chia hết cho 31
c,S3 bằng 1+3+32+33+...+311 chia hết cho 40
d,S4 bằng 165+215 chia hết cho 33
B4 :Chứng minh rằng:
a,1674.2012 chia hết cho 18
b,204.1997 chia hết cho 51
c,1002.444 chia hết cho 37
S=1+3+3^2+...+3^2019
a,Tính S
b,Chứng minh S chia hết cho 4
c,S chia 13 dư bao nhiêu
a, \(S=1+3+3^2+...+3^{2019}\)
\(3S=3+3^2+3^3+...+3^{2020}\)
\(3S-S=\left(3+3^2+3^3+...+3^{2020}\right)-\left(1+3+3^2+...+3^{2019}\right)\)
\(2S=3^{2020}-1\)
\(S=\frac{3^{2020}-1}{2}\)
b, \(S=1+3+3^2+3^3+...+3^{2019}\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\)
\(S=4+3^2\left(1+3\right)+...+3^{2018}\left(1+3\right)\)
\(S=4\cdot1+3^2\cdot4+...+3^{2018}\cdot4\)
\(S=4\left(1+3^2+...+3^{2018}\right)⋮4\)
Cho tổng S=3+32+33+34+...+390
a)Chứng minh rằng S chia hết cho 4
b)Chứng minh rằng S chia hết cho 13
c)Chứng minh rằng S chia het cho 14
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
Tính S=5+5^1+5^2+5^3+.......+5^2006
a, Tính S
b, Chứng minh S chia hết cho 126
Giúp tuii vs ạ tuii đang cần gấp ><
a: Sửa đề: S=5+5^2+...+5^2006
5S=5^2+5^3+...+5^2007
=>4S=5^2007-5
=>S=(5^2007-5)/4
b: S=5+5^4+5^2+5^5+...+5^2003+5^2006
=5(1+5^3)+5^2(1+5^3)+...+5^2003(1+5^3)
=126(5+5^2+...+5^2003) chia hết cho 126
Cho tổng:S=3^1+3^2+3^3+.....+ 3^20.Chứng minh rằng:
a)S chia hết cho 12
b)S chia hết cho 120
c)S không chia hết cho 13
Cho S = 3^0 + 3^2 + 3^4 + 3^6 +....+ 3^2002
a) Tính S
b) Chứng minh S chia hết cho 7
a)nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7
ta có:32004-1=(36)334-1=(36-1).M=7.104.M
=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7
Chứng minh:
S= 1+5+...+5^119 chia hết cho 6, 13, 31
S=3+3^2+...+3^60 chia hết cho 13, 40