Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
gorosuke
Xem chi tiết
zZz Cool Kid_new zZz
20 tháng 12 2019 lúc 19:17

Ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\cdot\frac{xy+z\left(x+y+z\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x=-y\left(h\right)y=-z\left(h\right)z=-x\)

Xét \(x=-y\)

Ta có:

\(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}}+\frac{1}{-y^{2017}}+\frac{1}{y^{2017}}=\frac{1}{z^{2017}}\)

\(\frac{1}{x^{2017}+y^{2017}+z^{2017}}=\frac{1}{-x^{2017}+y^{2017}+z^{2017}}=\frac{1}{z^{2017}}\)

\(\Rightarrow\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}+y^{2017}+z^{2017}}\left(dpcm\right)\)

Một cái chặt hơn nè:))

CMR nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^n}+\frac{1}{y^n}+\frac{1}{z^n}=\frac{1}{x^n+y^n+z^n}\) với n lẻ.

Khách vãng lai đã xóa
Ngu Người
Xem chi tiết
Đặng Minh Đức
9 tháng 12 2018 lúc 19:21

ddeeelll cần làm

Trịnh Ngọc Thành
Xem chi tiết
Nguyễn Thế Phúc Anh
Xem chi tiết
Dong tran le
19 tháng 12 2017 lúc 22:20

Chào bạn

bạn nhân chéo lên rồi tách ra thì bạn sẽ có

1/x+1/y+1/z=1/x+y+z tương đương với (x+y)(y+z)(x+z)=0

Đến đây thì dễ rồi

trần thành đạt
Xem chi tiết
xuân bản bùi
Xem chi tiết
Nguyễn Linh Chi
13 tháng 6 2020 lúc 10:31

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)  ( x, y , z khác 0 )  (@)

<=> \(\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

<=> \(\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

<=> x + y = 0  (1) 

hoặc: \(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}=0\)(2)

(2) <=> \(zx+zy+z^2+xy=0\)

<=> \(z\left(x+z\right)+y\left(x+z\right)=0\)

<=> \(\left(x+z\right)\left(y+z\right)=0\)

<=> x + z = 0 hoặc y + z = 0 

<=> x = - z hoặc y = -z 

(1) <=> x = - y 

Vậy: (@) <=> x = - y hoặc y = -z hoặc z = - x

Vì vị trí của x, y, z có vai trò như nhau. G/S: x = - y

khi đó: \(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{\left(-y\right)^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{z^{2017}}\)

và: \(\frac{1}{x^{2017}+y^{2017}+z^{2017}}=\frac{1}{z^{2017}}\)

Do vậy: \(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\)\(\frac{1}{x^{2017}+y^{2017}+z^{2017}}\)

Khách vãng lai đã xóa
Nguyễn Thị Trang Nhunh
Xem chi tiết
Thái Ngọc Trâm Anh
Xem chi tiết
Nguyệt
28 tháng 1 2019 lúc 16:34

thay xyz=2017, ta có:

\(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)

\(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)

\(\text{Bài làm }\)

\(\text{ Gọi xyz = 2017}\)

\(\text{Ta có:}\) \(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)

           \(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)

\(\text{# Chúc bạn học tốt #}\)

Nguyệt
28 tháng 1 2019 lúc 16:47

@bn Thần chết:

đề bài cho xyz=2017 rồi nên ko được gọi nữa nhé

kien nguyen van
Xem chi tiết