Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thế Phúc Anh

Cho x,y,z khác 0 và x+y+z khác 0. CM nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\) thì \(\dfrac{1}{x^{2017}}+\dfrac{1}{y^{2017}}+\dfrac{1}{z^{2017}}=\dfrac{1}{x^{2017}+y^{2017}+z^{2017}}\)

Dong tran le
19 tháng 12 2017 lúc 22:20

Chào bạn

bạn nhân chéo lên rồi tách ra thì bạn sẽ có

1/x+1/y+1/z=1/x+y+z tương đương với (x+y)(y+z)(x+z)=0

Đến đây thì dễ rồi


Các câu hỏi tương tự
Phan Hoàng Linh Ngọc
Xem chi tiết
Từ Đào Cẩm Tiên
Xem chi tiết
hh Clroyalhh
Xem chi tiết
Bùi Thị Ngọc Anh
Xem chi tiết
Nguyễn Thế Phúc Anh
Xem chi tiết
Nguyễn Thế Phúc Anh
Xem chi tiết
Vy Nguyễn Đặng Khánh
Xem chi tiết
Bình An
Xem chi tiết
Đoàn Hoàng Thiên Phú
Xem chi tiết