Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Hoàng Linh Ngọc

Cho a,b,c và x,y,z khác nhau và khác 0

CMR: \(\text{Nếu }\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0,\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

\(\text{Thì }\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)

lê thị hương giang
20 tháng 11 2017 lúc 8:10

+) \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Rightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)

\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)

\(\Rightarrow ayz+bxz+cxy=0\)

+) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)

Các câu hỏi tương tự
Nguyễn Thế Phúc Anh
Xem chi tiết
Nguyễn Minh Châu
Xem chi tiết
Nguyễn Minh Châu
Xem chi tiết
Từ Đào Cẩm Tiên
Xem chi tiết
hh Clroyalhh
Xem chi tiết
Vy Nguyễn Đặng Khánh
Xem chi tiết
Trần Minh Hưng
Xem chi tiết
Nguyễn Thế Phúc Anh
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết