Bài 4. Cho hình thang ABCD (ABIICD, ABCCD) Qua B kẻ đường thẳng song song với AD cắt CD to E chứng minh.
a) AD=BE, AB=DE
b) CD-AB=CE
c) BC+AD> CD-AB
Bài 4. Cho hình thang ABCD (ABIICD, ABC<CD) Qua B kẻ đường thẳng song song với AD cắt CD to E chứng minh.
a) AD=BE, AB=DE
b) CD-AB=CE
c) BC+AD>CD-AB
a: Xét tứ giác ABED có
AB//ED
AD//BE
Do đó: ABED là hình bình hành
=>AB=DE và AD=BE
b: CE+ED=CD(E nằm giữa C và D)
mà DE=AB
nên CE+AB=CD
=>CD-AB=CE
c: Xét ΔECB có EB>CE-CB
mà AD=EB
nên AD>CE-CB
=>AD+CB>CE
mà CE=CD-AB
nên AD+CB>CD-AB
5. Cho hình thang ABCD (AB CD , AB CD ). Qua B kẻ đường thẳng song song với
AD cắt CD tại E . Chứng minh
a) AD BE , AB DE ; b) CD AB CE ; c) BC AD CD AB .
a: Xét tứ giác ABED có
AB//ED
AD//BE
Do đó: ABED là hình bình hành
Suy ra: AD=BE và AB=DE
Cho hình thang ABCD (AB // CD) có CD>AB. Qua A kẻ đường thẳng song song với BC cắt CD, BD tại K,E. qua B kẻ đường thẳng song song với AD cắt CD, AC tại I, F .chứng minh AB // EF
Bài 5: Cho hình thang ABCD (AB//CD), biết Ax,Dy lần lượt là phân giác của góc A, góc D của hình thang. Chứng minh Ax vuông góc với Dy
Bài 6: Cho hình thang ABCD (AB//CD,AB<CD). Qua B kẻ đường thẳng song song với AD cắt CD tại E. Chứng minh:
a) AD=BE , AB=DE
b) CD-AB=CE
c) BC+AD>CD_AB
Bài 5
\(\widehat{A}+\widehat{D}=180^o\) (Hai góc trong cùng phía bù nhau)
\(\widehat{DAx}=\widehat{BAx}=\dfrac{\widehat{A}}{2}\) (gt)
\(\widehat{ADy}+\widehat{CDy}=\dfrac{\widehat{D}}{2}\) (gt)
\(\Rightarrow\widehat{DAx}+\widehat{ADy}=\dfrac{\widehat{A}}{2}+\dfrac{\widehat{D}}{2}=\dfrac{180^o}{2}=90^o\)
Xét tg ADE có
\(\widehat{AED}=180^o-\left(\widehat{DAx}+\widehat{ADy}\right)=180^o-90^o=90^o\) (Tổng các góc trong của tg bằng 180 độ)
\(\Rightarrow Ax\perp Dy\)
Bài 6:
a/
Ta có
AB//CD => AB//DE
BE//AB (gt)
=> ABED là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> AB = DE; AD = BE (Trong hình bình hành các cạnh đối nhau thì bằng nhau)
b/
CD - DE = CE
Mà AB = DE (cmt)
=> CD - AB = CE
c/
Xét tg BCE có
BC+BE>CE (trong tg tổng độ dài 2 cạnh lớn hơn độ dài cạnh còn lại)
Mà CE = CD - DE và DE = AB (cmt) và BE = AD
=> BC+BE = BC + AD>CE = CD - AB
Gọi G là giao điểm của hai đường phân giác Ax và By
Ta có: \(\widehat{ADG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) ( vì DG là phân giác góc ADE)
\(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{DAB}\)( vì AG là phân giác góc DAB )
⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) + \(\dfrac{1}{2}\)\(\widehat{DAB}\) = \(\dfrac{1}{2}\)(\(\widehat{ADE}\) + \(\widehat{DAB}\))
\(\widehat{ADE}\) + \(\widehat{DAB}\) = 1800 (vì hai góc là hai góc trong cùng phía)
⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\) \(\times\) 1800 = 900
Xét tam giác ADG có: \(\widehat{GAD}\) + \(\widehat{ADG}\) + \(\widehat{DGA}\) = 1800 (tổng ba góc trong 1 tam giác bằng 1800)
⇒ \(\widehat{DGA}\) = 1800 - 900 = 900
Vậy tam giác ADG vuông tại G ⇒AE \(\perp\) DG (đpcm)
Bài 1: Cho hình thang ABCD ( có AB// CD). Gọi E là trung điểm của AD. Kẻ đường thẳng qua E song song với AB và cắt BC tại F.
a) Chứng minh F là trung điểm của BC.
b) Cho AB = 4; CD =12. Tính EF.
Bài 2: Cho hình thang ABCD (có AB // CD; AB < CD). Gọi E, F, G lần lượt là trung điểm của AD, AC, BD.
a) Chứng minh E, F, G thẳng hàng.
b) Chứng minh EF = (CD-AB)/2.
Bài 1: Cho hình thang ABCD ( có AB// CD). Gọi E là trung điểm của AD. Kẻ đường thẳng qua E song song với AB và cắt BC tại F.
a) Chứng minh F là trung điểm của BC.
b) Cho AB = 4; CD =12. Tính EF.
Bài 2: Cho hình thang ABCD (có AB // CD; AB < CD). Gọi E, F, G lần lượt là trung điểm của AD, AC, BD.
a) Chứng minh E, F, G thẳng hàng.
b) Chứng minh EF = (CD-AB)/2.
Cho hình thang ABCD có AB // CD qua A kẻ đoạn thẳng song song với BC cắt BD tại E qua B kẻ đường thẳng song song với AD cắt AC tại F. Chứng minh EF song song với AB
cho hình thang cân ABCD có đáy CD và AB ( AB<CD).Qua A kẻ đường thẳng song song với BC cắt đường chéo BD ở E qua B kẻ đường thẳng song song với AD cắt đường thẳng song song với AD cắt đường chéo AC tại F . a) CMR tứ giác DEFC là hình thang cân . b) tính độ dài EF biết AB=5cm , CD= 10cm
HELP ME ...............
Cho hình thang ABCD (AB//CD và AB<CD). Lấy E trên AD, qua E kẻ đường thẳng d song song với AB, cắt BC tại F. Chứng minh: AE/ED=BF/FC.
Xét hình thang ABCD có
EF//AB//CD
nên AE/ED=BF/FC