Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dũng trần
Xem chi tiết

a: Xét tứ giác ABED có

AB//ED

AD//BE

Do đó: ABED là hình bình hành

=>AB=DE và AD=BE

b: CE+ED=CD(E nằm giữa C và D)

mà DE=AB

nên CE+AB=CD

=>CD-AB=CE

c: Xét ΔECB có EB>CE-CB

mà AD=EB

nên AD>CE-CB

=>AD+CB>CE

mà CE=CD-AB

nên AD+CB>CD-AB

Nguyen Dinh Anh (Fschool...
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 9 2021 lúc 16:06

a: Xét tứ giác ABED có 

AB//ED

AD//BE

Do đó: ABED là hình bình hành

Suy ra: AD=BE và AB=DE

Đoàn Kim Phương
Xem chi tiết
Nguyễn Hữu Quang
Xem chi tiết
Nguyễn Ngọc Anh Minh
20 tháng 7 2023 lúc 16:05

Bài 5

A B C D E y x

\(\widehat{A}+\widehat{D}=180^o\) (Hai góc trong cùng phía bù nhau)

\(\widehat{DAx}=\widehat{BAx}=\dfrac{\widehat{A}}{2}\) (gt)

\(\widehat{ADy}+\widehat{CDy}=\dfrac{\widehat{D}}{2}\) (gt)

\(\Rightarrow\widehat{DAx}+\widehat{ADy}=\dfrac{\widehat{A}}{2}+\dfrac{\widehat{D}}{2}=\dfrac{180^o}{2}=90^o\)

Xét tg ADE có

\(\widehat{AED}=180^o-\left(\widehat{DAx}+\widehat{ADy}\right)=180^o-90^o=90^o\) (Tổng các góc trong của tg bằng 180 độ)

\(\Rightarrow Ax\perp Dy\)

Bài 6:

A B C E D

a/

Ta có

AB//CD => AB//DE

BE//AB (gt)

=> ABED là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

=> AB = DE; AD = BE (Trong hình bình hành các cạnh đối nhau thì bằng nhau)

b/

CD - DE = CE

Mà AB = DE (cmt)

=> CD - AB = CE

c/

Xét tg BCE có

BC+BE>CE (trong tg tổng độ dài 2 cạnh lớn hơn độ dài cạnh còn lại)

Mà CE = CD - DE và DE = AB (cmt) và BE = AD

=> BC+BE = BC + AD>CE = CD - AB

 

 

loading...

Gọi G là giao điểm của hai đường phân giác Ax và By 

Ta có: \(\widehat{ADG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) ( vì DG là phân giác góc ADE)

           \(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{DAB}\)( vì AG là phân giác góc DAB )

     ⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) + \(\dfrac{1}{2}\)\(\widehat{DAB}\) = \(\dfrac{1}{2}\)(\(\widehat{ADE}\) + \(\widehat{DAB}\)

           \(\widehat{ADE}\) + \(\widehat{DAB}\) = 1800 (vì hai góc là hai góc trong cùng phía)

      ⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\) \(\times\) 1800 = 900

          Xét tam giác ADG có: \(\widehat{GAD}\) + \(\widehat{ADG}\) + \(\widehat{DGA}\) = 1800 (tổng ba góc trong 1 tam giác bằng 1800)

               ⇒ \(\widehat{DGA}\)  = 1800 - 900 = 900

Vậy tam giác ADG vuông tại G ⇒AE \(\perp\) DG (đpcm)

                                           

 

Chanhh
Xem chi tiết
Chanhh
Xem chi tiết
Đào Thị Bích Vân
Xem chi tiết
demilavoto
Xem chi tiết
trang chelsea
27 tháng 1 2016 lúc 18:37

ok con de

Nguyễn Nghĩa
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 0:24

Xét hình thang ABCD có

EF//AB//CD

nên AE/ED=BF/FC