\(\frac{1}{2}\)+\(\frac{1}{2}\)=
\(\frac{5}{4}\)+ \(\frac{5}{4}\)=
\(\frac{6}{6}\)+\(\frac{6}{6}\)=
So sánh:\(\frac{\frac{\frac{1}{2}}{\frac{3}{4}}}{\frac{\frac{5}{6}}{\frac{7}{8}}}+\frac{\frac{\frac{8}{7}}{\frac{6}{5}}}{\frac{\frac{4}{3}}{\frac{2}{1}}}\) và\(\frac{\frac{\frac{1}{2}}{\frac{3}{4}}+\frac{\frac{8}{7}}{\frac{6}{5}}}{\frac{\frac{5}{6}}{\frac{7}{8}}+\frac{\frac{4}{3}}{\frac{2}{1}}}\)và \(\frac{\frac{\frac{1}{2}+\frac{8}{7}}{\frac{3}{4}+\frac{6}{5}}}{\frac{\frac{5}{6}+\frac{4}{3}}{\frac{7}{8}+\frac{2}{1}}}\)và\(\frac{\frac{\frac{1+8}{2+7}}{\frac{3+6}{4+5}}}{\frac{5+4}{\frac{6+3}{2+1}}}\)
\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}-\left(\frac{-5}{6}\right)-\frac{6}{7}-\frac{-7}{8}+\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}-\left(-\frac{5}{6}\right)-\frac{-7}{8}+\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(=\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}+\frac{7}{8}+\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(=\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{2}{3}-\frac{2}{3}\right)+\left(\frac{3}{4}-\frac{3}{4}\right)+\left(\frac{4}{5}-\frac{4}{5}\right)+\left(\frac{5}{6}-\frac{5}{6}\right)+\frac{7}{8}+\frac{6}{7}\)
\(=\frac{7}{8}+\frac{6}{7}=\frac{49}{56}+\frac{48}{56}=\frac{49+48}{56}=\frac{97}{56}\)
bài 1: tính A:=\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{2}{3}-\frac{1}{2}\)
Bài 2: Cho B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{49}-\frac{1}{50}\)
Chứng minh rằng: \(\frac{7}{12}< A< \frac{5}{6}\)
\(3\frac{1}{2}-4\frac{2}{3}+\left[\frac{3}{4}-2\frac{1}{3}\right]-\left(\frac{5}{6}-\frac{7}{4}\right)+5\frac{1}{2}-3\)
\(2\frac{2}{3}-1\frac{2}{5}+1\frac{3}{10}-\left(\frac{2}{5}-\frac{5}{6}\right)+\frac{4}{15}-1\frac{1}{3}\)
\(\left[2\frac{1}{3}-1\frac{4}{3}\right]-\left(\frac{5}{4}-\frac{7}{12}+\frac{-11}{6}\right)+\frac{4}{3}-\frac{3}{4}\)
\(-3\frac{3}{2}+5\frac{4}{3}-\left(\frac{7}{6}-1\frac{3}{4}\right)+\left[\frac{2}{3}-2\frac{1}{4}\right]\)
\(2\frac{2}{3}-\frac{5}{12}-\left(1\frac{3}{4}-2\frac{1}{4}\right)-\left[1-1\frac{1}{6}\right]+\left[\frac{-5}{3}\right]\)
\(1\frac{1}{3}-5\frac{1}{2}-\left[\frac{5}{6}-2\frac{2}{3}\right]+\left[\frac{7}{12}-\frac{5}{6}\right]\)
\(\frac{8}{15}-\left(\frac{2}{5}-3\frac{1}{3}+\left[\frac{-5}{6}\right]\right)+\left[\frac{1}{2}-\frac{4}{5}\right]-\left(\frac{1}{6}-1\frac{1}{3}\right)\)
\(-2\frac{3}{2}+\left[\frac{5}{6}-1\frac{1}{3}\right]-\left(\frac{5}{12}-\frac{7}{6}\right)+\left[\frac{4}{3}-3\frac{1}{4}\right]\)
\(\frac{9}{10}-1\frac{2}{5}-\left(\frac{5}{6}-3\frac{1}{2}\right)-\left[2\frac{1}{4}-5\frac{2}{36}\right]-\left[1-2\frac{1}{15}\right]\)
\(\frac{5}{7}-\frac{5}{21}+1\frac{2}{3}-\left(1\frac{1}{2}-\frac{5}{14}-\frac{1}{3}\right)+\left[\frac{1}{6}-\frac{4}{3}\right]\)
\(\frac{5}{7}-\frac{5}{21}+1\frac{2}{3}-\left(1\frac{1}{2}-\frac{5}{14}-\frac{1}{3}\right)+\left[\frac{1}{6}-\frac{4}{3}\right]\)
\(1\frac{1}{5}-\left(\frac{-9}{10}-2\frac{1}{2}+\frac{3}{4}\right)+\left[\frac{1}{5}-2\frac{1}{2}\right]+\frac{7}{10}-\left(\frac{1}{2}-\frac{1}{4}\right)\)
\(2\frac{1}{3}-\left(5\frac{1}{2}-2\frac{2}{3}\right)+\left[1\frac{1}{6}-2\frac{1}{2}\right]-\frac{5}{12}+\left(\frac{1}{4}-\frac{1}{8}\right)\)
Tìm x biết:
a.
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}...\frac{30}{62}.\frac{31}{64}=2^x\)
b.
\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^x\)
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot\frac{4}{10}\cdot....\cdot\frac{30}{62}\cdot\frac{31}{64}=2^x\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.....\cdot\frac{30}{31}\cdot\frac{31}{32}\right)=2^x\)
\(\Leftrightarrow\frac{1}{32}=2^{x+1}\)
Làm nốt.
ko làm được câu này hay câu b ib với tớ nha.khẳng định tối giải.
\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{7}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{7}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
= \(\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{-2}{3}+\frac{2}{3}\right)+\left(\frac{3}{4}-\frac{3}{4}\right)+\left(\frac{-4}{5}+\frac{4}{5}\right)+\frac{5}{6}-\frac{6}{7}\)
= \(\frac{5}{6}-\frac{6}{7}\)
= \(\frac{-1}{42}\)
\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{5}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(=\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{-2}{3}+\frac{2}{3}\right)+\left(\frac{3}{4}-\frac{3}{4}\right)+\left(\frac{-4}{5}+\frac{4}{5}\right)+\frac{5}{6}-\frac{6}{7}\)
\(=\frac{5}{6}-\frac{6}{7}\)
\(=\frac{-1}{42}\)
1a)tìm x,y biết: \(4+\frac{x}{7+y}=\frac{4}{7}and:x+y=22\)
b)cho \(\frac{x}{3}=\frac{y}{4}\)và \(\frac{y}{5}=\frac{z}{6}\). Tính M=\(\frac{2x+3y+4z}{3x+4y+5z}\)
c) tìm x biết \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}=2^x\)
d)\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)
2. Tính:P=\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+..+16\right)\)
Câu b) tạm thời ko bít làm =.=
Bài 1 :
\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)
\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)
\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)
\(\Leftrightarrow\)\(2^{12}=2x\)
\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)
\(\Leftrightarrow\)\(x=2^{11}\)
\(\Leftrightarrow\)\(x=2048\)
Vậy \(x=2048\)
Chúc bạn học tốt ~
Bài 1 :
\(a)\) Ta có :
\(4+\frac{x}{7+y}=\frac{4}{7}\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)
\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)
Do đó :
\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)
\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)
Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)
Chúc bạn học tốt ~
2.
Ta có 1+2+...+n=n.(n+1):2
=>P=\(1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\)\(\frac{1}{16}.\frac{16.17}{2}\)=1+\(\frac{3}{2}+\frac{4}{2}+...+\frac{17}{2}\)=1+\(\frac{1}{2}.\left(3=4+..=17\right)\)
=1+\(\frac{1}{2}.153=1+\frac{153}{2}=\frac{155}{2}\)
tính\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}-\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}-\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(=\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{2}{3}-\frac{2}{3}\right)+\left(\frac{3}{4}-\frac{3}{4}\right)-\left(\frac{4}{5}-\frac{4}{5}\right)-\left(\frac{6}{7}+\frac{5}{6}\right)\)
\(=-\frac{71}{42}\)
A)\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}....\frac{30}{62}.\frac{31}{64}=4^x\)
B)\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=8^x\)
1 thuc hien phep tinhh
a ,\(\frac{-2}{3}+\frac{3}{4}-\frac{-1}{6}+\frac{-2}{5}\)
b,\(\frac{-2}{3}+\frac{-1}{5}+\frac{3}{4}-\frac{5}{6}-\frac{-7}{10}\)
c,\(\frac{1}{2}-\frac{-2}{5}+\frac{1}{3}+\frac{5}{7}-\frac{-1}{6}+\frac{-4}{35}+\frac{1}{41}\)
a,71/60 hay 1,18(3)
b,-1/4 hay -0,25
83/41 hay 2,02
-\(\frac{-2}{3}+\frac{3}{4}-\frac{-1}{6}+\frac{-2}{5}=-\frac{4}{6}+\frac{1}{6}+\frac{3}{4}-\frac{2}{5}=-\frac{2}{4}+\frac{3}{4}-\frac{2}{5}=\frac{1}{4}-\frac{2}{5}=-\frac{3}{20}\)
= \(-\frac{3}{20}\)