Cho tứ giác ABCD có BC=CD và BD là tia phân giác của góc D.Chứng minh ABCD là hình thang
Bài 1: Tính các góc của hình thang ABCD ( AB//CD), biết rằng góc A=3 lần góc D. Góc B trừ góc C= 30 độ
Bài 2: Tứ giác ABCD có BC=CD và DB là tia phân giác của góc D. Chứng minh rằng ABCD là hình thang. Ai giúp mình vs, mình cần gấp lắm
Lớp 7 mới học tam giác thôi, cái này lp 8
Tứ giác ABCD có AB=BC và CA là tia phân giác của góc A.CMR tứ giác ABCD là hình thang
AB = BC
=> Tam giác ABC cân B
BAC = BCA
Có BAC = DAC ( phân giác )
=> BCA = DAC
2 góc này có vị trí so le trong
AD//BC
=> tứ giác ABCD là hình thang
Bài 1 :Tính các góc của hình thang ABCD ( AB// CD), biết rằng góc A = 3 lần góc D, góc B trừ góc C= 30 độ
Bài 2: Tứ giác ABCD có BC= CD và DB là tia phân giác của góc D. Chứng minh rằng ABCD là hình thang.
Ai biết giúp mình vs ạ. Mình cần gấp
Bài 1:
Giải: Vì AB // CD
=> A + D =180o
mà A = 3D => 3D + D = 180o
=> 4D = 180o
=> D = 45o => A = 135o
Ta có: AB // CD => B + C = 180o
mà B - C = 30o hay B = C + 30o
=> C + 30o + C = 180o
=> 2C = 150o => C = 75o => B = 105o
Bài 1:
Vì AB // CD (gt)
\(\Rightarrow\)\(\widehat{A} + \widehat{D} = 180^0\) (kề bù)
mà \(\widehat{A} = 3 \widehat{D}\) (gt)
\(\Rightarrow\)\(\widehat{D} = 45^0\) và \(\widehat{A} = 135^0\)
Vì AB // CD (gt)
\(\Rightarrow\)\(\widehat{B} + \widehat{C} = 180^0\) (kề bù)
mà \(\widehat{B} - \widehat{C} = 30^0\) (gt)
\(\Rightarrow\)\(2 \widehat{B} = 210^0\)
\(\Rightarrow\)\(\widehat{B} = 105^0\)
\(\Rightarrow\)\(\widehat{C} = 75^0\)
Vậy.......
bài 1 có ng làm rồi
bài 2
tam giác BCD có BC=CD
=> BCD cân tại B
=> góc CBD= góc CDB
mà góc CDB= góc BDA
=> góc CBD=góc BDA
mà 2 góc ở vị trí so le trong
=> AD//BC
=> ĐPCM
1) Tứ giác ABCD có AB // CD, AB < CD, AD = BC. Chứng minh ABCD là hình thang cân
2) Tứ giác ABCD có góc A = góc B, BC = AD
a) Chứng minh ABCD là hình thang cân
b) Cho biết AC vuông góc vs BD và đường cao AH = 4cm. Tính AB + CD
1) Tứ giác ABCD có AB // CD, AB < CD, AD = BC. Chứng minh ABCD là hình thang cân
2) Tứ giác ABCD có góc A = góc B, BC = AD
a) Chứng minh ABCD là hình thang cân
b) Cho biết AC vuông góc vs BD và đường cao AH = 4cm. Tính AB + CD
a) cho tam giác ABC cân tại A. Trên tia đối của tia AB lây điểm M, trên tia đối của tia AC lấy điểm N sao cho AM=AN. chứng minh rằng tứ giác MNBC là hình thang cân.
b) cho tứ giác ABCD có AD=AB=BC và gócA+gócC=180 độ. chứng minh rằng:
-DB là phân giác góc D
-ABCD là hình thang cân
a: Xét ΔANM và ΔACB có
AN/AC=AM/AB
\(\widehat{NAM}=\widehat{CAB}\)
Do đó: ΔANM\(\sim\)ΔACB
Suy ra: \(\widehat{ANM}=\widehat{ACB}\)
hay MN//BC
Xét tứ giác MNBC có MN//BC
nên MNBC là hình thang
mà MB=NC
nên MNBC là hình thang cân
b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
\(\widehat{BDC}\) là góc nội tiếp chắn cung BC
mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của góc ADC
giải dum : cho hinh thang vuông ABCD có góc A=góc D= 90 độ , AB=AD= 1/2CD . Gọi E là trung điểm của CD
a) tứ giác ABCD là hình gì ? vì sao?
b) tứ giác ABED là hình gì ? vì sao?
c) gọi m là giao điểm của AC và BE , K là giao điểm của AE và DM, Ola2 giao điểm 2 đường chéo hình vuong ABED . Kẻ DH vuông góc với AC cắt AE tại i . Chứng minh BD là tia phân giác của góc IDK .
d) Chứng minh Bidk là hình thoi
Tứ giác ABCD có AB = BC và AC là tia phân giác góc A.Chứng minh rằng ABCD là hình thang.
Ai pít giải jum nhe
tam giác ABC có
AB=BC(gt)
suy ra:tam giác ABC cân tại B
suy ra:góc ABC=goc ACB(2 goc o day bang nhau cua tam giac can ABC)
goc DAC= goc BAC(vi AC la tia phan giac cua goc A)
suy ra:goc DAC= goc ACB(= goc BAC)
suy ra:AD//BC(Vi gocDAC=gocACB hai goc so le trong)
suy ra:ABCD là hình thang có đáy AD và BC
1. Cho hình bình hành ABCD có AB= 2AD. Gọi M, N theo tứ tự là trung điểm của các cạnh AB, CD. Gọi P và Q lần lượt là giao điểm của BN với CM và của AN với DM
a. Tứ giác AMND là hình gì? Vì sao?
b. Chứng minh: tứ giác MPNQ là hình chữ nhật
c. Tìm điều kiện của tứ giác ABCD để MPNQ là hình vuông
d. Chứng minh: bốn đường thẳng AC, BD, MN, QP đồng qui
2. Cho hình bình hành ABCD. Kẻ AN, CM vuông góc với BD, N và M thuộc BD
a. Chứng minh DN = BM
b. Chứng minh Tứ giác ANCM là hình bình hành
c. Gọi K là điểm đối xứng với A qua N. Tứ giác DKCB là hình gì? Vì sao?
d. Tia AM cắt tia KC tại P. Chứng minh các đường thẳng AC, PN, KM đồng qui