Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Secret
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2016 lúc 18:13

Bất đẳng thức tương đương với

\(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c\ge\frac{\left(a+b+c\right)^2}{2\sqrt{3\left(ab+bc+ca\right)}}+a+b+c\)

\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\sqrt{3\left(ab+bc+ca\right)}}+a+b+c\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{a+b+c}{2\sqrt{3\left(ab+bc+ca\right)}}+1\left(1\right)\)

Áp dụng BĐT Bunhiacopxki ta có:

\(\left[\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right]\left[a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right]\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Ta chứng minh \(\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{a+b+c}{2\sqrt{3\left(ab+bc+ca\right)}}+1\left(2\right)\)

Đặt \(t=\frac{a+b+c}{\sqrt{3\left(ab+bc+ca\right)}}>0\),từ BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Ta được \(t^2\ge0\Rightarrow t>1\).BĐT (2) viết lại thành 

\(\frac{3t^2}{2}\ge\frac{t}{2}+1\Leftrightarrow\left(t-1\right)\left(3t+2\right)\ge0\) luôn đúng

=>(2) được chứng minh

Từ (1) và (2) => điều phải chứng minh

Đẳng thức xảy ra khi và chỉ khi a=b=c

Thắng Nguyễn
19 tháng 5 2016 lúc 17:14

áp dụng BĐT bunhiacopxki

Thúy Hiền Nguyễn
Xem chi tiết
Phùng Minh Quân
13 tháng 7 2020 lúc 18:26

\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)

Khách vãng lai đã xóa
Phùng Minh Quân
13 tháng 7 2020 lúc 18:42

\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)

\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)

Khách vãng lai đã xóa
Phùng Minh Quân
13 tháng 7 2020 lúc 18:46

\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b+2c}{27}+\frac{b+2c}{27}\ge\frac{a}{3}\)\(\Leftrightarrow\)\(\frac{a^3}{\left(b+2c\right)^2}\ge\frac{1}{3}a-\frac{2}{27}b-\frac{4}{27}c\)

tương tự rồi cộng lại

Khách vãng lai đã xóa
vvvvvvvv
Xem chi tiết
Cậu Bé Ngu Ngơ
Xem chi tiết
Mai Thành Đạt
Xem chi tiết
Trần Hữu Ngọc Minh
2 tháng 2 2018 lúc 23:34

Ta dự đoán :\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\)

Thật vậy ta sẽ chứng minh nó:

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\ge a\left(a^3+\left(b+c\right)^3\right).\)

\(\Leftrightarrow2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a\left(b+c\right)^3\left(#\right)\)

Ta có:\(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{1}{4}\left(b+c\right)^4\ge a\left(b+c\right)^3\)

Từ đó , ta có bất đẳng thức \(\left(#\right).\)

Tương tự:

\(\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\)

\(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}.\)

Cộng bất đẳng thức trên lại ta có điểu phải chứng minh.

Dấu bằng xảy ra khi \(a=b=c\)

Quỳnh Hương
Xem chi tiết
Phước Nguyễn
28 tháng 7 2016 lúc 14:39

Keke

\(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\ge\frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}\)  \(\left(i\right)\)

Đặt  \(x=\frac{1}{a};\)  \(y=\frac{2}{b};\)  và  \(z=\frac{3}{c}\)  \(\Rightarrow\) \(\hept{\begin{cases}a=\frac{1}{x}\\b=\frac{2}{b}\\c=\frac{3}{z}\end{cases}}\)  nên   \(x,y,z>0\)

Khi đó, ta có thể biểu diễn lại bđt  \(\left(i\right)\) dưới dạng ba biến  \(x,y,z\)  như sau:

\(x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3xz}{2z+x}\) \(\left(ii\right)\)

Lúc này, ta cần phải chứng minh bđt  \(\left(ii\right)\)  luôn đúng với mọi  \(x,y,z>0\)

Thật vậy, ta có:

\(2x+y=x+x+y\ge3\sqrt[3]{x^2y}\)

\(\Rightarrow\) \(\frac{3xy}{2x+y}\le\frac{3xy}{3\left(x^2y\right)^{\frac{1}{3}}}=\left(xy^2\right)^{\frac{1}{3}}\le\frac{x+2y}{3}\)  \(\left(1\right)\)

Thiết lập các bđt còn lại theo vòng hoán vị  \(y\rightarrow z\rightarrow x\) , ta có:

\(\frac{3yz}{2y+z}\le\frac{y+2z}{3}\) \(\left(2\right);\)  \(\frac{3xz}{2z+x}\le\frac{z+2x}{3}\) \(\left(3\right)\)

Cộng từng vế ba bđt   \(\left(1\right);\)  \(\left(2\right);\)  và   \(\left(3\right)\) ta được:

\(VP\left(ii\right)\le\frac{x+2y+y+2z+z+2x}{3}=\frac{3\left(x+y+z\right)}{3}=x+y+z=VT\left(ii\right)\)

Vậy, bđt  \(\left(ii\right)\)  được chứng minh.

nên kéo theo  bđt  \(\left(i\right)\)  luôn là bđt đúng với  mọi  \(a,b,c>0\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(x=y=z\) \(\Leftrightarrow\)  \(6a=3b=2c\)

ミ★Zero ❄ ( Hoàng Nhật )
4 tháng 5 2020 lúc 16:06

bạn làm giống mình đó

Khách vãng lai đã xóa
Mèo' s Karry' s
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Uzumaki Naruto
2 tháng 9 2016 lúc 9:39

Áp dụng Bat đẳng thức C.B.S dạng Angel

Dấu bằng xảy ra khi a=2;b=1;c=1

Nguyễn Thảo Nguyên
Xem chi tiết