So sánh giá trị biểu thức bằng cách thuận tiện:
M = 2010/2011 + 2011/2012 và N = 2010+2011/2011+2012
a,So sánh M và N bằng cách thuận tiện nhất
M = 2010/2011 + 2011/2012 và N = 2010 + 2011/2011+2012
b,So sánh P =2011 x 2012 - 2 / 2010x2011+4020
tìm cách thuận tiên để so sánh M và N biết;
M=2010/2011+2011/2012 và N=2010+2011/2011+2012
Tìm cách thuận tiện nhất để so sánh M và N biết m = 2010 /2011 + 2011 / 2012 n bang 2010 +2011 /2011 + 2012
N=\(\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}\)
M=\(\frac{2010}{2011}+\frac{2011}{2012}\)
ta có \(\frac{2010}{2011+2012}< \frac{2010}{2011}\)
\(\frac{2011}{2011+2012}< \frac{2011}{2012}\)
-> N<M
So sánh giá trị của các biểu thức M và N bằng cách thuận tiện . M= 2010/2011+ 2011/2012 N=2010+2011/2011+2012
ta có: \(N=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}\)
\(\Rightarrow\frac{2010}{2011}>\frac{2010}{2011+2012};\frac{2011}{2012}>\frac{2011}{2011+2012}\)
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010}{2011+2012}+\frac{2011}{2011+2012}\)
=> M>N
a)So sánh M và N bằng cách thuận tiện nhất
M=\(\frac{2010}{2011}\)+ \(\frac{2011}{2012}\) và N= \(\frac{2010+2011}{2011+2012}\)
b) So sánh P=\(\frac{2011\cdot2012-2}{2010\cdot2011+4020}\)
a) Ta có : \(\frac{2010}{2011}>\frac{2010}{2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012}\)
Nên \(\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010+2011}{2011+2012}\)=> M > N
b) P = \(\frac{2011.2012-2}{2010.2011+4020}=\frac{2011.\left(2010+2\right)-2}{2010.2011+4020}=\frac{2011.2010+2011.2-2}{2010.2011+4020}=\)\(\frac{2011.2010+4020}{2010.2011+4020}=1\)
Nên P = 1
câu b sửa lại:\(P=\frac{2011.2012-2}{2010.2011+4020}=\frac{2011.2010+4022-2}{2010.2011+4020}=\frac{2010.2011+4020}{2010.2011+4020}=1\)
So sánh P và Q biết: P=2010/2011+2011/2012+2012/2013 và Q=2010+2011+2012/2011+2012+2013
bạn tham khảo:
2010/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2011/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2012/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
=> 2010/2011+2011/2012+2012/2013 > 2010+2011+2012/2011+2012+2013
2010/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2011/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2012/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
=> 2010/2011+2011/2012+2012/2013 > 2010+2011+2012/2011+2012+2013
So sánh P và Q, biết:
P = 2010/2011 + 2011/2012 + 2012/2013 và Q = 2010 + 2011 + 2012/2011 + 2012 + 2013
\(P=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
\(P>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
\(P>\frac{2010+2011+2012}{2011+2012+2013}\)
\(P>Q\)
So sánh P và Q, biết: \(P=\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}\) và \(Q=\dfrac{2010+2011+2012}{2011+2012+2013}\)
\(Q=\dfrac{2010+2011+2012}{2011+2012+2013}=\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)
Ta có: \(\dfrac{2010}{2011+2012+2013}< \dfrac{2010}{2011}\)
\(\dfrac{2011}{2011+2012+2013}< \dfrac{2011}{2012}\)
\(\dfrac{2012}{2011< 2012< 2013}< \dfrac{2012}{2013}\)
\(\Rightarrow\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)
\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(P>Q\)
so sánh P và Q :
P=2010/2011+2011/2012+2012/2013
Q=2010+2011+2012/2011+2012+2013