1\(\frac{1}{4}\) x X - \(\frac{3}{5}\) = \(\frac{4}{5}\) x X + 75%
\(\frac{1}{3}x+\frac{3}{4}x-75\%=-5\frac{1}{4}\)
\(\frac{1}{3}X+\frac{3}{4}X-75\%=-5\frac{1}{4}\)
\(60\%.X+\frac{2}{3}X=-76\)
1/3x + 3/4x - 75% = -5 1/4
=> x - 3/4 = -21/4
=> x = -21/4 + 3/4
=> x = -9/2
60%x + 5/6x = -76
=> 3/5x + 5/6x = -76
=> 43/30x = -76
=> x = -76 : 43/30
=> x = -2280/43
\(\frac{1}{3}x+\frac{3}{4}x-75\%=-5\frac{1}{4}\)
\(\frac{13}{12}x-\frac{3}{4}=-\frac{21}{4}\)
\(\frac{13}{12}x=-\frac{9}{2}\)
\(x=-\frac{54}{13}\)
\(60\%.x+\frac{2}{3}x=-76\)
\(\frac{3}{5}x+\frac{2}{3}x=-76\)
\(\frac{19}{15}x=-76\)
\(x=-60\)
bài 2 tìm x
a,\(\frac{-2}{3}.x+\frac{1}{5}=\frac{3}{10}\)
b,\(\left|x\right|-\frac{3}{4}=\frac{5}{3}\)
c,\(\frac{2}{3}.x-\frac{1}{2}=\frac{1}{10}\)
d,\(\frac{3}{5}+\frac{4}{9}:x=\frac{2}{3}\)
e,\(\left|x+75\%\right|=2\frac{1}{5}\)
i,\(\left(x+\frac{1}{2}\right).\left(\frac{2}{3}-2.x\right)=0\)
k,\(\frac{4}{7}.x-\frac{2}{3}=\frac{1}{5}\)
l,\(\frac{2}{3}.x-\frac{3}{2}.x=\frac{5}{12}\)
m,\(\left|2.x-\frac{1}{3}\right|+\frac{5}{6}=1\)
n,\(\frac{1}{3}-\frac{7}{8}.x=\frac{1}{3}\)
11,\(\frac{x+2}{5}=\frac{7}{12}-1\frac{1}{4}\)
12,\(\left(2\frac{4}{5}.x-50\right):\frac{2}{3}=51\)
13,\(\frac{2}{5}+\frac{3}{5}.\left(3.x-3,7\right)=-\frac{53}{10}\)
14,\(\frac{7}{9}:\left(2+\frac{3}{4}.x\right)+\frac{5}{9}=\frac{23}{27}\)
A: \(75\%.x-\frac{3}{2}:\frac{5}{4}=3\frac{1}{2}+25\%\)
B:\(\left(x-\frac{3}{4}\right).50\%-\frac{2}{7}=1+\frac{3}{4}\)
C: \(\left(\frac{5}{6}-2\frac{1}{2}\right):x=\frac{2}{5}-\frac{1}{3}\)
D: \(\left(\frac{1}{4}-x\right)-\frac{1}{2}=2\frac{1}{2}+1\)
A)\(75\%.x-\frac{3}{2}:\frac{5}{4}=3\frac{1}{2}+25\%\)
<=>\(\frac{3}{4}x-\frac{6}{5}=\frac{7}{2}+\frac{1}{4}\)
<=>\(\frac{3}{4}x=\frac{7}{2}+\frac{1}{4}+\frac{6}{5}\)
<=>\(\frac{3}{4}x=\frac{99}{20}\)
<=>\(x=\frac{33}{5}\)
B)\(\left(x-\frac{3}{4}\right).50\%-\frac{2}{7}=1+\frac{3}{4}\)
<=>\(\left(x-\frac{3}{4}\right)\cdot\frac{1}{2}=\frac{7}{4}\)
<=>\(\frac{1}{2}x-\frac{3}{8}=\frac{7}{4}\)
<=>\(\frac{1}{2}x=\frac{17}{8}\)
<=>\(x=\frac{17}{4}\)
C)\(\left(\frac{5}{6}-2\frac{1}{2}\right):x=\frac{2}{5}-\frac{1}{3}\)
<=>\(-\frac{5}{3}:x=\frac{1}{15}\)
<=>\(x=-\frac{25}{3}\)
D)\(\left(\frac{1}{4}-x\right)-\frac{1}{2}=2\frac{1}{2}+1\)
<=>\(\frac{1}{4}-x-\frac{1}{2}=\frac{7}{2}\)
<=>\(-\frac{1}{4}-x=\frac{7}{2}\)
<=>\(x=-\frac{15}{4}\)
Bài 1: Tìm x biết:
a) |x-3|-x=1
b) 4x+1+ 4x+2+4x+3=5376
c)\(\frac{\left(1,16-x\right).5,25}{\left(10\frac{5}{9}-7\frac{1}{4}\right).2\frac{2}{11}}\)=75%
BÀI 1: RÚT GỌN
1)\(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}\)
2)\(\sqrt{7+2\sqrt{10}}+2\sqrt{\frac{1}{5}}-\frac{1}{\sqrt{5}-2}\)
3)\(\frac{3}{\sqrt{3}-1}+\sqrt{\frac{4}{3}}-\sqrt{8+2\sqrt{5}}\)
4)\(3\sqrt{\frac{16x}{81}}+\frac{5}{4}\sqrt{\frac{4x}{25}}-\frac{2}{x}\sqrt{\frac{9a^3}{4}}\)
5)\(\frac{1}{3}\sqrt{3a}-\frac{2}{3}\sqrt{\frac{27a}{4}}+\frac{5}{a}\sqrt{\frac{12a^3}{5}}\)
BÀI 2: GIẢI PHƯƠNG TRÌNH
\(1)\sqrt{5x-1}=\sqrt{2}-1\\ 2)\sqrt{1-2x}=\sqrt{3}-1\\ 3)4\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=20\\ 4)\frac{3}{5}\sqrt{\frac{25x-75}{16}}-\frac{1}{14}\sqrt{49x-147}=20\\ 5)\frac{1}{2}\sqrt{x-2}-4\sqrt{\frac{4x-8}{9}}+\sqrt{9x-18}-5=0\)
BÀI 3: CHO BIỂU THỨC
Q=\(\frac{2}{2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{2\sqrt{x}}{x-4}\) ĐKXĐ x ≥ 0, x ≠ 4
a) Rút gọn biểu thức Q
b) Tính Q thì x = 81
c) Tìm x để Q = \(\frac{6}{5}\)
d) Tìm x để nguyên đó Q nguyên
1) 75% . x - x =\(-1\frac{3}{4}\) 2)( 2,8x - 32) :\(\frac{2}{3}\)= -90
3) (3,5 - 22) . \(1\frac{1}{3}\)=\(-7\frac{1}{3}\) 4) \(1-\left(5.\frac{3}{8}+x-1\frac{5}{24}\right).10\frac{2}{3}=0\)
1. Tìm x, biết:
a) 3,2.x + (-1,2).x + 2,7 = -4,9
b) -5,6.x + 2,9.x - 3,86 = -9,8
2. Tính giá trị của các biểu thức :
A = -5,13 : \(\left(5\frac{5}{28}-1\frac{8}{9}.1,25+1\frac{16}{63}\right)\)
B = \(\left(3\frac{1}{3}.1,9+19,5:4\frac{1}{3}\right).\left(\frac{62}{75}-\frac{4}{25}\right)\)
Bài 1:
a) Ta có:
\(3,2\cdot x+\left(-1,2\right)\cdot x+2,7=-4,9\)
\(\Rightarrow\left[3,2+\left(-1,2\right)\right]\cdot x=\left(-4,9\right)-2,7\)
\(\Rightarrow2x=-7,6\)
\(\Rightarrow x=\left(-7,6\right):2\)
\(\Rightarrow x=-3,8\)
Vậy \(x=-3,8\)
b) Ta có:
-5,6.x+2,9.x-3,86=-9,8
=>[(-5,6)+2,9].x=(-9,8)+3,86
=>(-2,7).x=-5,94
=>x=(-5,94):(-2,7)
=>x=2,3
Vậy x=2,2
1 tìm x biết ;
a, 0-|x + 1| = 5
b, 2 - | \(\frac{3}{4}\)- x | = \(\frac{7}{12}\)
c, 2 | \(\frac{1}{2}\)x - \(\frac{1}{3}\)| - \(\frac{3}{2}\)= \(\frac{1}{4}\)
d, | x - \(\frac{1}{3}\)| = \(\frac{5}{6}\)
e, \(\frac{3}{4}\)- 2 | 2x - \(\frac{2}{3}\)| = 2
f, \(\frac{2x-1}{2}\)= \(\frac{5+3x}{3}\)
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
1 tìm x biết ;
a, 0-|x + 1| = 5
b, 2 - | \(\frac{3}{4}\)- x | = \(\frac{7}{12}\)
c, 2 | \(\frac{1}{2}\)x - \(\frac{1}{3}\)| - \(\frac{3}{2}\)= \(\frac{1}{4}\)
d, | x - \(\frac{1}{3}\)| = \(\frac{5}{6}\)
e, \(\frac{3}{4}\)- 2 | 2x - \(\frac{2}{3}\)| = 2
f, \(\frac{2x-1}{2}\)= \(\frac{5+3x}{3}\)