Chứng Tỏ Rằng: \(3a+3b⋮17\Leftrightarrow10a+b⋮17;\left(a;b\in Z\right)\)
Chứng minh rằng: \(3a+2b\) chia hết cho 17\(\Leftrightarrow10a+b\)chia hết cho 17 \(\left(a,b\in Z\right)\)
sorry anh nha em mới học lớp 5 thôi !
sory anh nha em mới chỉ học lớp 5 mà thôi xin anh thông cảm !
Ta có :3a+2b chia hết cho 17
<=>3a+2b+17a chia hết cho 17 (vì 17a chia hết cho 17)
<=>(3a+17a)+2b chia hết cho 17
<=>20a+2b chia hết cho 17
<=>2(10a+b) chia hết cho 17
Mà (2;17)=1
=>10a+b chia hết cho 17
=>đpcm
CMR: \(3a+2b⋮17\Leftrightarrow10a+b⋮17\) \((a,b\in Z)\)
(Do phải chứng minh \(3a+2b⋮17\Leftrightarrow10a+b⋮17\)nên ta phải chứng minh hai chiều nhé)
Ta có : \(10a+b=17\Leftrightarrow2\left(10a+b\right)⋮17\)
Ta lại có : \(2\left(10a+b\right)-\left(3a+2b\right)\)
\(=20a+2b-3a-2b\)
\(=17a⋮17\)mà \(2\left(10a+b\right)⋮17\)
\(\Rightarrow3a+2b⋮17\)
Ta có : \(2\left(10a+b\right)-\left(3a+2b\right)\)
\(=20a+2b-3a-2b\)
\(=17a⋮17\)mà \(3a+2b⋮17\)
\(\Rightarrow2\left(10a+b\right)⋮17\)
Do \(\left(2,17\right)=1\Rightarrow10a+b⋮17\)
Vậy \(3a+2b⋮17\Leftrightarrow10a+b⋮17\)
CMR : 3a + 2b \(⋮\) 17 \(\Leftrightarrow10a+b⋮17\) (a;b \(\in\) Z )
Ta có:
\(2.\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b\)
\(=17a\)
Vì \(17⋮17\Rightarrow17a⋮17\)
\(\Rightarrow2.\left(10a+b\right)-\left(3a+2b\right)⋮17\)
Vì \(3a+2b⋮17\Rightarrow2.\left(10a+b\right)⋮17\)
Mà (2,10) = 1\(\Rightarrow10a+b⋮17\)
⇒ 3a+2b ⋮ 17 ⇌ 10a + b⋮ 17 ( đpcm )
Lời giải:
Đây là bài chứng minh 2 chiều (\(\Leftrightarrow )\). Vì vậy, làm như bạn Thủy thì chỉ chứng minh được một chiều thuận thôi.
Ta có:
\(3a+2b\vdots 17\)
\(\Leftrightarrow 9(3a+2b)\vdots 17\) (do \(9,17\) nguyên tố cùng nhau)
\(\Leftrightarrow 27a+18b\vdots 17\)
\(\Leftrightarrow 27a+18b-17(a+b)\vdots 17\)
\(\Leftrightarrow 10a+b\vdots 17\)
Bài toán hai chiều được chứng minh.
Với a,b là các số tự nhiên. Chứng tỏ rằng : a, nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17
B, nếu a— 5b chia hết 17 thì 10a + b chia hết 17
C, nếu a — b chia hết cho 7 thì 4a + 3b chia hết 7
dễ lắm bn cứ nhân lên mk chỉ một abif r cứ dựa vào mà làm nhá
25.(3a+2b)+10a+b=85a+51b chia hết cho 17
vì 3a+2b chia hết cho 17 mà 25.(3a+2b)+10a+b=85a+51b chia hết cho 17=>10a+bchia hết cho 17
cho 3a + 2b chia hết cho 17 (a,b thuộc N ) CHỨNG TỎ RẰNG 10a + b chia hết cho 17
Theo bài ta có:
3a+2b\(⋮\)17
=>8.(3a+2b)\(⋮\)17
=>24a+16b\(⋮\)17
=>24a+10a+16b+b
=34a+17b
=17.(2a+b)\(⋮\)17
Mà 24a+16b=8.(3a+2b)\(⋮\)17
=>10a+b\(⋮\)17
Chúc bn học tốt
cho biết 3a+2BCHIA HẾT CHO 17 CHỨNG TỎ RẰNG 10A+B CHIA HET CHO 17
\(Ch\text{ứng}\)\(minh\)\(r\text{ằng}\)\(3a+2b⋮17\Leftrightarrow10a+b⋮17\)
Ta có :
\(3a+2b⋮17\)
\(\Rightarrow9\left(3a+2b\right)⋮17\)
\(\Rightarrow27a+18b⋮17\)
\(\Rightarrow\left(17a+17b\right)+\left(10a+b\right)⋮17\)
\(\Rightarrow10a+b⋮17\)(1)
Ta có :
\(10a+b⋮17\)
\(\Rightarrow2\left(10a+b\right)⋮17\)
\(\Rightarrow20a+2b⋮17\)
\(\Rightarrow17a+3a+2b⋮17\)
\(\Rightarrow3a+2b⋮17\)(2)
Từ (1) và (2) \(\Rightarrow3a+2b⋮17\Leftrightarrow10a+b⋮17\)(đpcm)
_Chúc bạn học tốt_
câu thứ 2
a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17
10a-50b=10a+b-51b
51b chia hết cho 17 nên 10a+b chia hết cho 17
51a : 17
=> 51a - a + 5b : 17
=> 50a + 5b : 17
=> 5 ( 10a + b ) : 17
=> 10a + b : 17
Ta có : tích của 2 và 3 thì chia hết cho 17
=> 10a = 2 x 5 x a + b chia hết cho 17
Những câu dưới bạn tự làm nha
Cho 3a + 2b chia hết cho 17 ( a , b là số tự nhiên). Chứng tỏ rằng 10a + b chia hết cho 17
Ta có :
3a + 2b \(⋮\)17
=> 3a + 2b + 17a \(⋮\)17
=> 20a + 2b \(⋮\)17
=> 2 . ( 10 + b ) \(⋮\)17
Mà ( 2 , 17 ) = 1 => 10a + b chia hết cho 17
Vậy 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17 ( dpcm )