Tìm số nguyên n:
6n-5⋮2n+1
Tìm các số nguyên n:
6n+2 ⋮ 2n-1
6n + 2 ⋮ 2n - 1
6n - 3 + 5 ⋮ 2n - 1
3.(2n - 1) + 5 ⋮ 2n - 1
5 ⋮ 2n - 1
2n - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
Lập bảng ta có:
2n - 1 | -5 | -1 | 1 | 5 |
n | -2 | 0 | 1 | 3 |
Theo bảng trên ta có:
n \(\in\) {-2; 0; 1; 3}
Tìm số nguyên n:
a) 2n-3⋮n+1
b) n+2⋮2n-3
c) 6n+2⋮2n-1
Làm 1 câu cũng dc ạ!!
Câu c/
$6n+2\vdots 2n-1$
$3(2n-1)+5\vdots 2n-1$
$\Rightarrow 5\vdots 2n-1$
$\Rightarrow 2n-1\in Ư(5)$
$\Rightarrow 2n-1\in \left\{1; -1; 5; -5\right\}$
$\Rightarrow n\in \left\{1; 0; 3; -2\right\}$
Câu a/
$2n-3\vdots n+1$
$2(n+1)-5\vdots n+1$
$5\vdots n+1$
$\Rightarrow n+1\in Ư(5)$
$\Rightarrow n+1\in \left\{1; -1; 5; -5\right\}$
$\Rightarrow n\in \left\{0; -2; 4; -6\right\}$
Câu b/
$n+2\vdots 2n-3$
$\Rightarrow 2(n+2)\vdots 2n-3$
$\Rightarrow 2n-3+7\vdots 2n-3$
$\Rightarrow 7\vdots 2n-3$
$\Rightarrow 2n-3\in Ư(7)$
$\Rightarrow 2n-3\in \left\{1; -1; 7; -7\right\}$
$\Rightarrow n\in \left\{2; 1; 5; -2\right\}$
TÌM SỐ NGUYÊN N ĐỂ :
a, n +5 chia hết cho n-1
b, 2n - 4 chia hết cho n +2
c, 6n + 4 chia hết cho 2n + 1
d, 3 -2n chia hết cho n + 1
Tìm \(n\in N\)để \(5^{2n^2-6n+2}-12\)là số nguyên tố.
Đặt A = 52n2−6n+2−12=25n2−3n+1−12≡12n2−3n+1−12(mod13)52n2−6n+2−12=25n2−3n+1−12≡12n2−3n+1−12(mod13)
=>12n2−3n+1−12=12.(12n(n−3)−1)12n2−3n+1−12=12.(12n(n−3)−1)
(12n(n−3)−1)(12n(n−3)−1) chia luôn chia 13 dư 1 do n(n-3) luôn chia hết cho 2
=> 52n2−6n+2−12⋮1352n2−6n+2−12⋮13 mà A lại là số nguyên tố nên A= 13
=> 52n2−6n+2=2552n2−6n+2=25 => n =3
Vậy n = 3
n2−3n+1=n2−n−2n+1" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml"> hoặc
là số lẻ nên ta cóTìm số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó:
a) A=\(\frac{3n+9}{n-4}\)
b) B=\(\frac{6n+5}{2n-1}\)
A, \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Để A nguyên thì \(\frac{21}{n-4}nguy\text{ê}n\Leftrightarrow n-4\in\text{Ư}\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
n-4 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -17 | -3 | 1 | 3 | 5 | 9 | 11 | 25 |
TM | TM | TM | TM | TM | TM | TM | TM |
B, \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Để A ngyên <=> \(\frac{8}{2n-1}nguy\text{ê}n\Leftrightarrow2n-1\in\text{Ư}\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
-8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 | 2n-1 |
-3,5 | -1,5 | -0,5 | 0 | 1 | 1,5 | 2,5 | 4,5 | n |
loại | loại | loại | TM | TM | loại | loại | loại |
pạn có sách nâng cao và phát triển toán 7 ko trong đó có bài này. bài 7
mik cx có xem r nhưq ko hỉu gì hết , vs lại mik cần lời giải chi tiết hơn
B1:Tìm a,b thuộc N biết: a+b=252 và ƯCLN(a,b)=42
B2: Tìm x thuộc N biết::12 chia hết cho x+3
B3:Chứng minh với mọi n thuộc N, các số sau là 2 số nguyên tố cùng nhau : 2n+1 và 6n+5
a) Vì ƯCLN(a,b)=42 nên a=42.m và b=42.n với ƯCLN(m,n)=1
Mặt khác a+b=252 nên 42.m+42.n=252 hay m+n=6
Do m và n nguyên tố cùng nhau nên ta được như sau:
- Nếu m=1 thì a=42 và n=5 thì b=210
- Nếu m=5 thì a=210 và n=1 thì b=42
b) x+3 là ước của 12= {1;2;3;4;6} suy ra x={0;1;3}
c) Giả sử ƯCLN(2n+1; 6n+5)=d khi đó (2n+1) chia hết cho d và (6n+5) chia hết cho d
3(2n+1) chia hết cho d và (6n+5) chia hết cho d
(6n+5) - (6n+3) chia hết cho d syt ra 2 chia hết cho d suy ra d=1; d=2
Nhưng do 2n+1 là số lẻ nên d khác 2. vậy d=1 suy ra ƯCLN(2n+1; 6n+5)=1
Như vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau với bất kỳ n thuộc N (đpcm)
tìm n để phân số có giá trị là 1 số nguyên
Tính giá trị đó A=(3n+9)/(n-4)
B=(6n+5)/(2n-1)
giải nhanh giúp mình nhé ,cảm ơn
để A có giá trị là số nguyên thì (3n+9) phải chia hết cho(n-4)
n-4 chia hết cho n-4
suy ra 3(n-4) cũng chia hết cho n-4
Vậy 3n-12 chia hết cho n-4
Suy ra (3n+9)-(3n-4) chia hết cho n-4
suy ra 13 chia hết cho n-4
n-4 thuộc tập hợp ƯC của 13
Bạn tự làm tiếp nhé!!!( lập bảng hay không đều được)
cho A=6n+42/6n với n thuộc z và n khác 0. tìm tất cả các số nguyên n sao cho A cũng là số nguyên
Để A là số nguyên thì 42 phải chia hết cho 6n và n thuộc Z
=> 6n thuộc Ư(42)
Ư(42) = {1;2;3;6;7;14;21;42;- 1;- 2;- 3;- 6;- 7;- 14;- 21;- 42}
=> n thuộc {1;7;-1;-7} (42 : 6 = 7)
Vậy n thuộc {1;7;-1;-7}
cho A=6n+42/6n với n thuộc z và n khác 0. tìm tất cả các số nguyên n sao cho A cũng là số nguyên