rút gon A, biết : A=1+4 mũ 2+4 mũ 3+...+4 mũ 59
cho mình hỏi đa thức f(X)=-3 mũ 2 +x-1+x mũ 4 -x mũ 3 -x mũ 2 +3 x mũ 4 +2x mũ 3 g(X)=x mũ 4 + x mũ 2 -x mũ 3 + x -5 +5x mũ 3 -x mũ 2 - 3x mũ 4 a thu gon và sắp sếp các đa thúc theo lũy thừa giảm của biến dúp mình bài này với
\(f\left(x\right)=-3x^2+x-1+x^4-x^3-x^2+3x^4+2x^3\)
\(f\left(x\right)=\left(x^4+3x^4\right)-\left(x^3-2x^3\right)-\left(3x^2+x^2\right)+x-1\)
\(f\left(x\right)=4x^4+x^3-4x^2+x-1\)
\(g\left(x\right)=x^4+x^2-x^3+x-5+5x^3-x^2-3x^4\)
\(g\left(x\right)=\left(x^4-3x^4\right)+\left(5x^3-x^3\right)+\left(x^2-x^2\right)+x-5\)
\(g\left(x\right)=-2x^4+4x^3+x-5\)
`@` `\text {Ans}`
`\downarrow`
`a,`
\(f(x) -3x^2 + x - 1 + x^4 - x^3 - x^2 + 3x^4 + 2x^3\)
`= (x^4 +3x^4) + (-x^3 +2x^3) + (-3x^2 - x^2) + x - 1`
`= 4x^4 + x^3 -4x^2 + x -1`
\(g(x) = x^4 + x^2 - x^3 + x - 5 + 5x^3 - x^2 - 3x^4\)
`= (x^4-3x^4) + (-x^3+5x^3) + (x^2 - x^2) + x -5`
`= -2x^4 + 4x^3 +x - 5`
1 rút gọn:
7 mũ 3 . 5 mũ 2 . 5 mũ 4 . 7 mũ 6 :(5 mũ 5 . 7 mũ 8)
3 mũ 3 . a mũ 7 . 3 . a mũ 2:(3 mũ 4 . a mũ 6)
7 mũ 3 . 11 mũ 4 . a mũ 8 . b mũ 7 : 7 mũ 2 . 11 mũ 2 . a mũ 5 . b mũ 6
(2 mũ 5 . a mũ 4 . b mũ 3) . (2 mũ 3 . a . b mũ 5): 2 mũ 7 . a mũ 3 . b mũ 7
1.viet gon cac tich cac thuong sau duoi dang 1 luy thua
a,2 mũ 4 . 3 mũ 5 :6 mũ 4
2 tinh gia tri
a,5 mũ 3.8 b, 2 mũ 5 - 2019 mũ 0 c, 3 mũ 3 +2 mũ .5 - 1 mũ 10 d, 9 mũ 2 .33 -81 .23+5 mũ 2 g,[ 2 mũ 2 +6 mũ 2 ] :5 +11 mũ 2 h,14.3 mũ 10 -5.3 mũ 10 trên 3 mũ 12
làm nhanh mình tick cho nha
a,\(2^4\cdot3^5:6^4\)
\(=\frac{2^4\cdot3^6}{\left(2\cdot3\right)^4}\)
\(=\frac{2^4\cdot3^6}{2^4\cdot3^4}\)
\(=3^2\)
Bài 2
\(a,5^3\cdot8=5^3\cdot2^3=10^3=1000\)
\(b,2^5-2019^0=32-1=31\)
\(c,3^3+2^5-1^{10}=27+32-1=58\).
\(d,9^2\cdot33-81\cdot23+5^2=81\cdot33-81\cdot23+25\)
\(=81\cdot\left(33-23\right)+25\)
\(=810+25=835\)
\(g,\left[2^2+6^2\right]:5+11^2\)
\(=\left[4+36\right]:5+121\)
\(=40:5+121=8+121\)
\(=129\)
\(d,\frac{14\cdot3^{10}-5\cdot3^{10}}{3^{12}}\)
\(=\frac{3^{10}\cdot\left(14-5\right)}{3^{12}}\)
\(=\frac{3^{10}\cdot9}{3^{12}}\)
\(=\frac{3^{10}\cdot3^2}{3^{12}}=\frac{3^{12}}{3^{12}}\)
\(=1\)
Rút gọn:
A= 2 + 2 mũ 2 + 2 mũ 3+ ..... + 2 2017
B = 1+ 3 mũ 2 + 3 mũ 4+......+ 3 mũ 2017
a) \(A=2+2^2+2^3+...+2^{2017}\)
\(A=2\left(1+2^1+2^2+...+2^{2016}\right)\)
\(A=2.\dfrac{2^{2016+1}-1}{2-1}\)
\(A=2.\left(2^{2017}-1\right)=2^{2018}-2\)
Câu b bạn xem lại đề
Chứng minh:
A=1+4+4 mũ 2 +...+4 mũ 58+4 mũ 59 chia hết cho 85
a. A=1+4+42+43+...+458+459 chia hết cho 85
A=(1+4)(4^2+4^3)...........(4^58+4^59):5
A=(1+4)4^2(1+4)............4^58(1+4)
A=5.4^2.5.............4^58.5 chia hết cho 5
chia hết cho 85 cũng tương tự chỉ thế số thôi
+) CM chia hết cho 5
\(A=\left(1+4\right)+4^2\left(1+4\right)+....+4^{58}\left(1+4\right)\)
=> A chia hết cho 5
+) CM chia hết cho 17
\(A=\left(1+16\right)+4\left(1+16\right)+...+4^{57}\left(1+16\right)\)
=> A chia hết cho 17
Mà (5;17)=1
=> A chia hết cho 5x17=85
=> Đpcm
chuk bn hok tốt
a. A=1+4+4 2+4 3+...+4 58+4 59 chia hết cho 85
A=(1+4)(4^2+4^3)...........(4^58+4^59):5
A=(1+4)4^2(1+4)............4^58(1+4)
A=5.4^2.5.............4^58.5 chia hết cho 5 chia hết cho 85
cũng tương tự chỉ thế số thôi
1) rút gọn biểu thức
a) 2 mũ 7 nhân 9 mũ 3 trên 6 mũ 5 nhân 8 mũ 2
b) 6 mũ 3 nhân 3 nhân 6 mũ 2 nhân 3 mũ 3 trên -13
c) 5 mũ 4 nhân 20 mũ 4 trên 25 mũ 5 nhân 4 mũ 5
d) (5 mũ 4 - 5 mũ 3) tất cả mũ 3 trên 125 mũ 4
Rút gọn phép tính 2 mũ 5 *3 mũ 7 * a mũ 4 * b mũ 3 * ( 2 mũ 2 * 3 * a mũ 2 b )
1. Cho A = 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
Tìm số tự nhiên n biết 2A + 3 = 3 mũ n
2. Chứng minh rằng A là một lũy thừa của 2 với:
A = 4+ 2 mũ 2 + 2 mũ 3 + .... + 2 mũ 20
3. Thu gọn các tổng sau:
a) A = 1 + 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
b) B = 1 + 4 + 4 mũ 2 + 4 mũ 3 + 4 mũ 4 + ... + 4 mũ 100
c) C = 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 6 + .... + 5 mũ 200
d) D = 3 mũ 100 + 3 mũ 101 + 3 mũ 102 + .... + 3 mũ 150
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
xét xem mỗi đẳng thức sau đúng hay sai
37 nhân ( 3 cộng 7 ) = 3 mũ 3 + 3 mũ 7
59 nhân ( 5 + 9 ) = 5 mũ 3 + 9 mũ 3
( 1 + 2 + 3 + 4 ) mũ 2 = 1 mũ 2 + 2 mũ 2 + 3 mũ 2 + 4 mũ 2
( 1 + 2 + 3 + 4 ) mũ 2 = 1 mũ 3 + 2 mũ 3 + 3 mũ 3 + 4 mũ 3
+) 37 x ( 3 + 7 ) = 3^3 + 3^7
- 37 x ( 3 + 7 ) = 370
- 3^3 + 3^7 = 27 + 2187 = 2214
Từ đó, suy ra => SAI
+) 59 x ( 5 + 9 ) = 5^3 + 9^3
- 59 x ( 5 + 9 ) = 826
- 5^3 + 9^3 = 125 + 729 = 854
Từ đó, suy ra => SAI