tìm n để:n mũ 2+2.n-3 chia hết cho n-1
Tìm n để:n^2+n+4 chia hết cho n+1
=>4 chia hết cho n+1
=>\(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)
Tìm n để:n^2+n+4 chia hết cho n+1
Ta có:
\(n^2+n+4=\left(n^2+n\right)+4=n\left(n+1\right)+4\)
Để \(\left(n^2+n+4\right)⋮\left(n+1\right)\) thì \(4⋮\left(n+1\right)\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow n\in\left\{-5;-3;-2;0;1;3\right\}\)
n2+n+4 ⋮ n+1
\(\Rightarrow\) n. n + n.1 +4 ⋮ n+1
\(\Rightarrow\) n . ( n+1) + 4 \(⋮\) n+1
Để n . ( n+1) +4 \(⋮\) 4 thì 4 \(⋮\) n+1 { Vì n . ( n+1) \(⋮\) 4}
\(\Rightarrow\) n +1 \(\in\) ( 4 )
\(\Rightarrow\) n+ 1 \(\in\) { \(\pm\) 1; \(\pm\)2; \(\pm\) 4}
\(\Rightarrow\) n \(\in\) { 0; -2 ; 1 ; -3 ; 3 ;-5}
tìm n là số tự nhiên để:
n^2+n chia hết cho n+1
Tìm số nguyên n để:n+5 chia hết cho n-2
Ta có:
n+5 chia hết cho n-2
Mà n-2 chia hết cho n-2
=>(n+5)-(n-2) chia hết cho n-2
=>7 chia hết cho n-2
=> n-2 thuộc {-7;-1;1;7}
=>n thuộc {-5;1;3;9}
Tìm giá trị nhỏ nhất của số nguyên n để:n2+3n-13 chia hết cho n+3.
Ta có: \(n^2+3n-13=n\left(n+3\right)-13\)
Mà \(n\left(n+3\right)\) chia hết cho n+3
Nên để \(n^2+3n-13\) chia hết thì \(-13\) chia hết cho n(n+3)
\(\Rightarrow n\left(n+3\right)\inƯ\left(13\right)\)
\(n\left(n+3\right)=-13;n\left(n+3\right)=-1;n\left(n+3\right)=1;n\left(n+3\right)=13\)
Ko có TH nào là số nguyên coi lại đề đi bạn
n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3 Mà n(n+3) chia hết cho n+3
=>13 chia hết cho n+3 Mà n thuộc Z
=>n+3 thuộc {-13, -1, 1, 13}
=>n thuộc {-16, -4, -2, 10}
Mà n là giá trị nhỏ nhất
=>n=-16
Vậy n=-16
tìm số tự nhiên x để:n+13 chia hết cho n2+1
n mũ 2+n+1 chia hết cho n+1
n mũ 2 -n+2 chia hết cho n-1
n mũ 2 +5 chia hết cho n-1
n mũ 2+7chia hết cho+1
n mũ 2-3 nhân n +4 chia hết chon-2
Bài 1: Cho A=3 + 3 mũ 2 + 3 mũ 3 + ... +3 mũ 2010.
a, Tìm c/s tận cùng của A.
b, Chứng tỏ 2A+ 3 là 1 lũy thừa của 3.
c,Tìm x thuộc N biết: 2A-3=3 mũ x.
d, CMR A chia hết cho 13.
Bài 2: Chứng minh rằng:
a, 942 mũ 60 - 351 mũ 37 chia hêt cho 5.
b ( n + 2009) . ( n+ 2010) chia hết cho 2 với mọi STN n.
Bài 4: Tìm n thuộc N biết:
a, ( n + 9) chia hết cho ( n + 5)
b, 2 mũ n - 3 hết mũ - 2 mũ n = 448
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
bài 1: tìm n, biết
a) n+10 chia hết cho n - 1
b) n mũ 2 +6 chia hết cho n mũ 2 +1
c) n mũ 2 +11 chia hết cho n mũ 2 +1
bài 2: tìm stn nhỏ hơn 200, khi chia hết cho 2,3,4,5. Có số dư lần lượt là 1,2,3,4,5.