tìm n thuộc N sao để n^4+4 là số nguyên tố
1,Tìm n thuộc N để n+1 và 7n+4 là 2 số nguyên tố cùng nhau.
2,Tìm số tự nhiên n sao cho n2+3 là số chính phương.
Bài 1: Gọi ước chung lớn nhất của n + 1 và 7n + 4 là d
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}7n+7⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ 7n+ 7 - 7n - 4 ⋮ d
⇒ (7n - 7n) + (7 - 4) ⋮ d ⇒0 + 3 ⋮ d ⇒ 3 ⋮ d ⇒ d \(\in\) Ư(3) = {1; 3}
Nếu n = 3 thì n + 1 ⋮ 3 ⇒ n = 3k - 1 khi đó hai số sẽ không nguyên tố cùng nhau.
Vậy để hai số nguyên tố cùng nhau thì n \(\ne\) 3k - 1
Kết luận: n \(\ne\) 3k - 1
Tìm n thuộc N sao cho n^4+1 là số nguyên tố
Tìm n thuộc N để các số sau là số nguyên tố 1 . C = ( n - 2 ) (n +4 )
Do n-2<n+4 nên C là số nguyên tố khi và chỉ khi:
\(\left\{{}\begin{matrix}n-2=1\\n+4\text{ là số nguyên tố}\end{matrix}\right.\)
\(\Rightarrow n=3\)
Tìm n thuộc P sao cho
a, n+2,n+4 là số nguyên tố
b,n+2,n+6,n+8,n+12,n+14 đều là số nguyên tố
1. Tìm số nguyên dương n để P nguyên tố
P= n( n +1 )/2
2. Tìm số nguyên tố P để 2P+1 là lập phương của một số tự nhiên
3. Tìm n thuộc số tự nhiên khác 0 đển n^4 + 4 là số nguyên tố
Em tham khảo!
Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath
Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath
Câu 1:Tìm tất cả các số tự nhiên n để:3n+9.n+36 là một số nguyên tố
Câu 2:Tìm n thuộc N sao cho:42013+42013+42013+42013=4n
tìm n thuộc N để n^4-6n^3+12n^2-12n+20 là số nguyên tố
Tìm n thuộc Z để p = 10/n^2 +4 là số nguyên tố chẵn2
Số nguyên tố chẵn duy nhất là số 2. Gán P = 2
\(\frac{10}{n^2+4}=2\Leftrightarrow n^2+4=5\Leftrightarrow n^2=1\Leftrightarrow\orbr{\begin{cases}n=-1\\n=1\end{cases}}\)
Vậy có 2 giá trị của n là n=-1 và n=1 thuộc Z để p là số nguyên tố chẵn.
Tìm số nguyên tố x,y thuộc N* sao cho x4 + 4y4 là số nguyên tố
x^4 + 4y^4 = x^4 + 4.x^2.y^2 + 4y^4 - 4.x^2.y^2
= (x^2 + 2y^2)^2 - (2xy)^2
= (x^2 + 2y^2 - 2xy)(x^2 + 2y^2 + 2xy)
Mà x,y thuộc số tự nhiên nên x^2 + 2y^2 - 2xy < x^2 + 2y^2 + 2xy
Mặt khác x^4 + 4y^4 là số nguyên tố nên => x^2 + 2y^2 - 2xy =1
<=> (x-y)^2 + y^2 = 1
=> x-y = 1 và y = 0 => x= 1, y = 0 (loại)
hoặc x-y = 0 và y = 1 => x=y=1
Vậy x=y=1
Cảm ơn các bạn nha