Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 12 2023 lúc 18:46

vậy thì mình xin giới thiệu luôn hai tam giác đồng dạng luôn: Định nghĩa hai tam giác đồng dạng: Hai tam giác ABC và A'B'C' gọi là đồng dạng với nhau khi chúng có các cặp cạnh tương ứng tỉ lệ và các góc tương ứng bằng nhau

a: Xét ΔEAB và ΔECM có

\(\widehat{EAB}=\widehat{ECM}\)(hai góc so le trong, AB//CM)

\(\widehat{AEB}=\widehat{CEM}\)(hai góc đối đỉnh)

Do đó: ΔEAB đồng dạng với ΔECM(g-g)

=>\(\dfrac{EA}{EC}=\dfrac{AB}{CM}=\dfrac{EB}{EM}\)

\(\dfrac{EA}{EC}=\dfrac{AB}{CM}\)

mà \(CM=\dfrac{CD}{2}\)

nên \(\dfrac{EA}{EC}=AB:\dfrac{CD}{2}=\dfrac{2\cdot AB}{CD}\)

 b: Xét ΔFAB và ΔFMD có

\(\widehat{FAB}=\widehat{FMD}\)(hai góc so le trong, AB//DM)

\(\widehat{AFB}=\widehat{MFD}\)(hai góc đối đỉnh)

Do đó: ΔFAB đồng dạng với ΔFMD

=>\(\dfrac{FA}{FM}=\dfrac{FB}{MD}=\dfrac{AB}{MD}\)

Ta có: \(\dfrac{FA}{FM}=\dfrac{AB}{MD}\)

\(\dfrac{BE}{EM}=\dfrac{BA}{MC}\)

mà MD=MC

nên \(\dfrac{FA}{FM}=\dfrac{BE}{BM}\)

=>\(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)

Xét ΔMAB có \(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)

nên FE//AB

Ta có: FE//AB

AB//CD

Do đó: FE//CD
c: Xét ΔADM có HF//DM

nên \(\dfrac{HF}{DM}=\dfrac{AF}{AM}\)

Xét ΔBDM có FE//DM

nên \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)

Xét ΔBMC có EG//MC

nên \(\dfrac{EG}{MC}=\dfrac{BE}{BM}\)

Ta có: \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)

\(\dfrac{EG}{MC}=\dfrac{BE}{BM}\)

Do đó: \(\dfrac{FE}{DM}=\dfrac{EG}{MC}\)

mà DM=MC

nên FE=EG

Ta có: \(\dfrac{AF}{FM}=\dfrac{BE}{EM}\)

=>\(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)

=>\(\dfrac{MF+FA}{FA}=\dfrac{ME+EB}{EB}\)

=>\(\dfrac{MA}{AF}=\dfrac{MB}{EB}\)

=>\(\dfrac{FA}{AM}=\dfrac{BE}{BM}\)

=>\(\dfrac{HF}{DM}=\dfrac{FE}{DM}\)

=>HF=FE

mà FE=EG

nên HF=FE=EG

VietAnh
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 1 2024 lúc 19:30

Không mất tính tổng quát, giả sử K nằm cùng phía so với A trên nửa mp bờ BC

Do BH song song MN, áp dụng định lý Thales trong tam giác ABH:

\(\dfrac{AB}{AM}=\dfrac{AH}{AG}\)

Do CK song song MN, áp dụng định lý Thales trong tam giác ACK:

\(\dfrac{AC}{AN}=\dfrac{AK}{AG}\)

Mặt khác do BH song song CK (cùng song song MN), áp dụng định lý Thales:

\(\dfrac{OH}{OK}=\dfrac{OB}{OC}=1\) (do O là trung điểm BC)

\(\Rightarrow OH=OK\)

Theo tính chất trọng tâm tam giác: \(AG=\dfrac{2}{3}AO\)

Do đó ta có:

\(\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{AH}{AG}+\dfrac{AK}{AG}=\dfrac{AH+AK}{AG}=\dfrac{\left(OA-OK\right)+\left(OA+OH\right)}{AG}\)

\(=\dfrac{2AO}{AG}=\dfrac{3AG}{AG}=3\)

Nguyễn Việt Lâm
18 tháng 1 2024 lúc 19:31

loading...

Trầ Văn Kiên
Xem chi tiết
Sakura Lovely girl
9 tháng 6 2017 lúc 20:10

đương nhiên

Công chúa sao băng
9 tháng 6 2017 lúc 20:11

Mk nghĩ tam giác này đồng dạng với tam giác nọ

Mk ko chắc lắm đâu , đấy là suy nghĩ của mk thui

Trầ Văn Kiên
9 tháng 6 2017 lúc 20:15

tam giác này đồng dạng tam giác kia trường hợp là góc góc

còn tam kia đồng dạng tam giác nọ là trường hợp c-g-c

vậy tam giác này đồng dạng tam giác nọ vẫn đúng à ??

mình đang thắc mắc

hán hảo
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 4 2022 lúc 21:11

Do \(\widehat{ACD}=\widehat{BHD}\) (cùng phụ \(\widehat{DBH}\)) nên 2 tam giác vuông nói trên đồng dạng

YangSu
10 tháng 4 2022 lúc 21:20

Xét tứ giác BADE có :

\(\left\{{}\begin{matrix}\widehat{BDA}=90^o\left(gt\right)\\\widehat{AEB}=90^o\left(gt\right)\end{matrix}\right.\)

mà 2 góc này nằm ở vị trí kề cùng nhìn 1 cạnh 

\(\Rightarrow\) TG BADE nội tiếp (O)

Xét \(\Delta ADC\) và \(\Delta BDH\) có :

\(\widehat{ADC}=\widehat{BDH}\left(=90^o\right)\)

\(\widehat{DAC}=\widehat{EBD}\) (cùng chắn \(\stackrel\frown{DE}\) của đtron \(\left(BADE\right)\) )

\(\Rightarrow\Delta ADC\sim\Delta BDH\left(g-g\right)\)

YangSu
10 tháng 4 2022 lúc 21:21

 

 

 

 

 

Đăng
Xem chi tiết
Chóii Changg
Xem chi tiết
Nguyễn Hương Quỳnh 02
Xem chi tiết
Chóii Changg
Xem chi tiết
Nguyễn Thị Ánh Hồng
Xem chi tiết