tìm ưcln của (1+2+3+...+n,2n+1)với n thuộc N,n lớn hơn hoặc bằng 2
tìm ƯCLN(1+2+3+...=n,2n+1) với n thuộc N, n lớn hơn hoặc bằng 2
Chứng tỏ rằng ,các số có dạng :
a, A=22n - 1 chia hết cho 5 ( n thuộc N ,n lớn hơn hoặc bằng 2)
b, B=24n +4 chia hết cho10 ( n thuộc N , n lớn hơn hoặc bằng 1)
c, H=92n +3 chia hết cho 2 ( n thuộc N , n lớn hơn hoặc bằng 1 )
CMR :
a) N = 1/4^2 + 1/6^2 + 1/8^2 + ... + 1/(2n)^2 < 1/4 ( n thuộc N ; n lớn hơn hoặc bằng 2 )
b) P = 2!/3! + 2!/4! + 2!/5! + ... + 2!/n! < 1 ( n thuộc N ; n lớn hơn hoặc bằng 3 )
a) \(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )
\(\Rightarrow N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.1=\frac{1}{4}\)
Vậy \(N< \frac{1}{4}\)
b) \(P=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}\)
\(P=2!\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...+\frac{1}{n!}\right)\)
\(P< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(P< 2.\left(\frac{1}{2}-\frac{1}{n}\right)=1-\frac{2}{n}< 1\)
Vậy \(P< 1\)
a) F = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/n.(n+3) với n thuộc N*
b)M = 1/2 mũ 2 + 1/3 mũ 2 +1/4 mũ 2 +...+ 1/n mũ 2 < 1
c) N = 1/4 mũ 2 + 1/6 mũ 2 + 1/8 mũ 2+...+ 1/2n mũ 2 < 1/4 (với n thuộc N,n lớn hơn hoặc bằng 2)
d) P = 2!/3! + 2!/4! + 2!/5!+ ...+ 2!/n! <2 ( với n thuộc N,n lớn hơn hoặc bằng 2)
nhanh lên nhé các bạn trả lời nhanh và đúng thì mình tích cho
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
A=2n-1/n-2 (n thuộc Z; n khác 2)
a) tìm n để A=3
b) tìm n để A lớn hơn hoặc bằng 0
a)\(A=3<=>\frac{2n-1}{n-2}=3<=>2n-1=3n-6<=>n=5\)
Vậy n=5 thì A=3
b)\(A\ge0<=>\frac{2n-1}{n-2}\ge0\)
<=> 2n-1>=0 và n-2>=0 hoặc 2n-1<=0 và n-2<=0
<=> n>=1/2 và n>=2 hoặc n<=1/2 và n<=2
<=> \(n\ge2;n\ne2\) n khác 2 vì nếu n=2 thì mẫu bằng 0
hoặc \(n\le\frac{1}{2}\)
Cho a = 1+2+3+....+n và b = 2n+1 (Với n thuộc N, n lớn hơn hoặc bằng 2). Chứng minh: a và b là hai số nguyên tố cùng nhau.
Ta có : \(a=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\) , b = 2n+1
Gọi ƯCLN(a,b)=d (\(d\ge1\))
Ta có : \(\begin{cases}\frac{n\left(n+1\right)}{2}⋮d\\2n+1⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}n\left(n+1\right)⋮d\\2n+1⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}4n^2+4n⋮d\\4n^2+4n+1⋮d\end{cases}\)
=> \(\left(4n^2+4n+1\right)-\left(4n^2+4n\right)⋮d\) hay \(1⋮d\)
=> \(d\le1\) mà \(d\ge1\Rightarrow d=1\)
=> đpcm
Xét n = 2k
- a = lẻ => b = chẵn
Mà chẵn lẻ tương phản, vậy suy ra được đpcm
Xét n = 2k + 1
- a = chẵn <=> b lẻ
Mà chẵn lẻ tương phản, vậy suy ra được đpcm
Vậy a và b là hai số nguyên tố cùng nhau. (với n thuộc N, n >=2)
CMR với mọi n lớn hơn hoặc bằng 2 n thuộc N thì n2n- n2+ n- 1chia hết cho (n-1)2
Tính 1+a^2+a^4+a^6+.....+a^2n, với a lớn hơn hoặc bằng 2 , n thuộc N
Cho n thuộc N sao, n lớn hơn hoặc bằng 2 chứng minh 1/4^2+1/6^2+...+1/(2n)^2<1/4