chứng minh rằng :
a) 1023 + 8 chia hết cho 18
b) 1010 + 14 chia hết cho 6
cho a,b là các số tự nhiên, biết 3a + 2b chia hết cho 17. Chứng minh rằng: 13a + 18b chia hết cho 17
giúp mình với
Chứng minh rằng:
a) 10^33 + 8 chia hết cho 18
b) 10^10 + 14 chia hết cho 6
chứng minh rằng: b*1010+c*100+a*1 chia hết cho 4 với a,b,c nằm trong tập hợp N và a+b*2chia hết cho 4chứng minh rằng: b*1010+c*100+a*1 chia hết cho 4 với a,b,c nằm trong tập hợp N và a+b*2chia hết cho 4
ai trả lời nhanh thì tôi k cho nhiều nhất
Bài 2: Chứng minh rằng: n2+n+6 chia hết cho 2
Bài 3: Chứng minh rằng: n3+5n chia hết cho 6
Bài 4: Chứng minh rằng: (n+20122013).(n+20132012) chia hết cho 2
Bài 5: Chứng tỏ rằng
a, 1038+8 chia hết cho 18
b, 1010+14 chia hết cho 16
Các bạn giúp mình nhé.
chứng minh rằng :
a) 1010 - 1 chia hết cho 9
b) 109 + 2 chia hết cho 3
c) tổng hai số chẵn liên tiếp không chia hết cho 4
d) tích của 2 số tự nhiên liêp tiếp bao giờ cũng là một số chẵn
e) tích hai số chẵn liên tiếp chia hết cho 8
a) Ta có: \(10^{10}=10...0\) nên \(10^{10}-1=10...0-1=99...9\)
Nên: \(10^{10}-1⋮9\)
b) Ta có: \(10^{10}=10...0\) nên: \(10^{10}+2=10...0+2=10...2\)
Mà: \(1+0+...+2=3\)
Nên: \(10^{10}+2⋮3\)
c) Gọi số chẵn đó \(a\) số chẵn tiếp theo là:\(a+2\)
Mà tổng của 2 số chẵn đó là:
\(a+a+2=2a+2=2\left(a+1\right)\) không chia hết cho 4 nên
Tổng của 2 số chẵn liên tiêp ko chia hết cho 4
d) Gọi hai số tự nhiên đó là: \(a,a+1\)
Tích của 2 số tự nhiên đó là:
\(a\left(a+1\right)=a^2+a\)
Nếu a là số lẻ thì \(a^2\) lẻ nên \(a^2+a\) là chẳn
Nếu a là số chẵn thì \(a^2\) chẵn nên \(a^2+a\) là chẵn
Vậy tích của hai số liên tiếp là chẵn
e) Gọi hai số đó là: \(2a,2a+2\)
Tích của hai số đó là:
\(2a\cdot\left(2a+2\right)=4a^2+4a=4a\left(a+1\right)\)
4a(a+1) chia hết cho 8 nên
Tích của hai số tự nhiên liên tiếp chia hết cho 8
d) Gọi một số tự nhiên bất kỳ là a
\(\Rightarrow\) Số tự nhiên liền kề là a+1
Nếu a là số lẻ thì a+1 là số chẵn
\(\Rightarrow a\left(a+1\right)\) là số chẵn
Nếu a là số chẵn thì \(a\left(a+1\right)\) là số chẵn
Vậy tích hai số TN liên tiếp bao giờ cũng là một số chẵn
e) Gọi hai số chẵn liên tiếp lần lượt là 2a và 2a+2 ( a là một số TN bất kỳ )
Ta có \(2a\left(2a+2\right)=2a.2\left(a+1\right)=4a\left(a+1\right)\)
Ta chứng minh được tích hai số TN liên tiếp bao giờ cũng là một số chẵn
\(\Rightarrow a\left(a+1\right)\) có dạng 2k ( k bất kỳ )
\(\Rightarrow2a\left(2a+2\right)=8k⋮8\)
Vậy tích hai số chẵn liên tiếp chia hết cho 8
BÀi 1: Chứng minh rằng: n2+n+6 chia hết cho 2
Bài 2:
Chứng minh rằng:n3+5n chia hết cho 6
Bài 3 Chứng minh rằng: (n+20132012). (n+20122013) chia hết cho 2
Bài 4 : Chứng tỏ rằng:
a, 1038+8 chia hết cho 18
b, 1010+14 chia hết cho 16
Các bạn giúp mình nhé!
Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Bài 1: CM A = n2 + n + 6 ⋮ 2
+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)
Khi đó: A = (2k)2 + 2k + 6
A = 4k2 + 2k + 6
A = 2.(2k2 + k + 3) ⋮ 2
+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ
Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn
⇒ A = n2 + n + 6 là số chẵn
A = n2 + n + 6 ⋮ 2
+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N
Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:
Bài 2: CM: A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N
Với n = 1 ta có: A = 13 + 1.5
A = 1 + 5 = 6 ⋮ 6
Giả sử A đúng với n = k (k \(\in\) N)
Khi đó ta có: A = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)
Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k + 1
Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6
Thật vậy với n = k + 1 ta có:
A = (k + 1)3 + 5(k + 1)
A = (k +1).(k + 1)(k + 1) + 5.(k +1)
A = (k2 + k + k +1).(k + 1) + 5k +5
A = [k2 + (k + k) + 1].(k + 1) + 5k + 5
A = [k2 + 2k + 1].(k + 1) + 5k + 5
A = k3 + k2 + 2k2 + 2k + k +1 +5k +5
A = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5)
A = (k3 + 5k) + 3k2 + 3k + 6
A = (k3 + 5k) + 3k(k +1) + 6
k.(k +1) là tích của hai số liên tiếp nên luôn chia hết cho 2
⇒ 3.k.(k + 1) ⋮ 6 (2)
6 ⋮ 6 (3)
Kết hợp (1); (2) và (3) ta có:
A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N
Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm)
Bài 3:
Đây là toán nâng cao chuyên đề tính chất chia hết của một tích, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Giải:
A = (n + 20132012).( n + 20122013)
TH1: Nếu n là số chẵn ta có:
2012 là số chẵn nên 20122013 là số chẵn suy ra n + 201213 là số chẵn. Mà số chẵn thì luôn chia hết cho 2
Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số chẵn (1)
TH2: Nếu n là số lẻ ta có:
2013 là số lẻ nên 20132012 là số lẻ khi đó ta có
n + 20132012 là số chẵn vì tổng của hai số lẻ là một số chẵn mà số chẵn thì luôn chia hết cho 2
Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số lẻ (2)
Kết hợp (1) và (2) ta có:
A = (n + 20132012).(n + 20122013) ⋮ 2 ∀ n \(\in\) N
chứng minh rằng 8^6-2^16 chia hết cho 14
Chứng minh rằng:
a) 102002 + 8 chia hết cho cả 9 và 2.
b) 102004 + 14 chia hết cho cả 3 và 2.
Chứng minh rằng:
a) Ta có: 102002+8 = 10...000 (2002 số 0) + 8 = 10...008 (2001 số 0) có 8 tận cùng nên chia hết cho 2 và tổng các chữ số của nó là: 1+0+...+0+0+8=9 nên chia hết cho 9
Vậy 102002 +8 chia hết cho 2 và 9.
b) Tương tự: = 10...014 (2002 số 0) có 4 tận cùng nên chia hết cho 2
và tổng các chữ số của nó là: 1+0+...+0+1+4=6 nên chia hết cho 3
Vậy 102004 +14 chia hết cho 2 và 3.
a) tổng 10615+8 có chia hết cho 2 và 9 không
b)tổng 10^2010+14 có chia hết cho3 và 2 không
c)hiệu 10^2010-4 có chia hết cho 3 không
d)chứng minh rằng aaa luôn chia hết cho 37
e)chứng minh aaabbb luôn chia hết cho 37
f)chứng tỏ rằng ab(a+b)chia hết cho 2(a;b thuộc N)
m)chứng minh ab+ba luôn chia hết cho 11
n)chứng minh ab-ba luôn chia hết cho 9 với a>b
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
b, B = 102010 + 14
Xét tổng các chữ có trong B là : 1 + 0 x 2010 + 4 = 6 ⋮ 3 ⇒ B ⋮ 3
B = 102010 + 14 = \(\overline{..0}\) + 4 = \(\overline{..4}\) ⋮ 2 vậy B ⋮ 2