tìm các số nguyên x ,y, z biết x + y =2 y+z=3 z+x = -5
tìm tìm số nguyên x y z biết x+y =2 y+z =3 x+z = -5
\(x\) + y = 2 ⇒ y = 2 - \(x\);
y + z = 3 ⇒ y = 3 - z ⇒ 2 - \(x\) = 3 - z ⇒ \(x\) = 3 - z - 2 ⇒ \(x\) = -1+ z
Thay \(x\) = - 1 + z vào biểu thức \(x\) + z = - 5 ta có: -1 + z + z = -5
⇒ 2z = 1 - 5 ⇒ 2z = -4 ⇒ z = -4: 2 ⇒ z = - 2
Thay z = - 2 vào biểu thức \(x\) = -1 + z ta có: \(x\) = -1 - 2 = -3
Thay \(x\) = - 3 vào biểu thức: y = 2 - \(x\) ta có: y = 2 - (-3) = 5
Vậy các số nguyên \(x\); y;z thỏa mãn đề bài là:
(\(x\); y; z) = (-3; 5; -2)
Tìm các số nguyên x,y,z biết rằng:
X+y=2
Y+z=2
Z+x=-5
Ta có x + y + y + z + z + x = 2 + 2 - 5 = -1
\(\Rightarrow\)2x + 2y + 2z = -1
\(\Rightarrow\)x + y + z = \(\frac{-1}{2}\)
Vậy
x = ( x + y + z ) - ( y + z ) = \(\frac{-1}{2}\)- 2 = -2,5
y = ( x + y + z ) - ( z + x ) = \(\frac{-1}{2}\)- (-5) = 4,5
z = ( x + y + z ) - ( x + y ) = \(\frac{-1}{2}\)- 2 = -2,5
xdxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1.Tìm các số nguyên x , y ,z biết
x/2 = x+y/3 = x+y+z/5 =10
2.Tim n thuoc Z de P có giá trị nguyên , biết
P= 12/3n-1
\(\frac{x}{2}=10\Leftrightarrow x=20\)
\(x+\frac{y}{3}=20+\frac{y}{3}=10\)\(\Leftrightarrow\frac{y}{3}=-10\Rightarrow y=-30\)
\(x+y+\frac{z}{5}=10\Leftrightarrow20+-30+\frac{z}{5}=10\)
\(\frac{z}{5}=20\Leftrightarrow z=100\)
Vậy \(x=20;y=-30;z=100\)
2. Để P là một số nguyên thì \(12⋮3n-1\)
\(3n-1\inƯ\left(12\right)\)
\(3n-1\in\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
\(3n\in\left\{-11;-5;-3;-2;-1;0;2;3;4;5;7;13\right\}\)
Bài 1: Tìm số nguyên χ biết:
a) (χ+3)(χ+2)=0
b) (7-3χ)3=(-8)
Bài 2: Tìm tất cả các số nguyên x;y;z;t biết:
|x+y+z+9|=|y+z+t+6|=|z+t+x-9|=|t+x+y-6|=0
Bài 3: Tìm ba cặp số nguyên (a;b) sao cho 20a+10b=2010
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
Bài 3
20a + 10b = 2010
10b = 2010 - 20a
b = (2010 - 20a) : 10
*) a = 0
b = (2010 - 20.0) : 10 = 201
*) a = 1
b = (2010 - 10.1) : 10 = 200
*) a = 2
b = (2010 - 10.2) : 10 = 199
Vậy ta có ba cặp số nguyên (a; b) thỏa mãn:
(0; 201); (1; 200); (2; 199)
Tìm các số nguyên dương x;y;z biết rằng.x^3-y^3-z^3=3xyz va x^2=2(y+z)
c) Tìm các số nguyên dương x, y, z biết: (x – y)3 + (y – z)2 + 2017 |x- z| = 2019^2020
Tìm các số x, y, z biết: x + y = 2, y + z = 5, z + x = -3
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405